Skip to main content

Advertisement

Log in

ECG-based pulse detection during cardiac arrest using random forest classifier

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Sudden cardiac arrest is one of the leading causes of death in the industrialized world. Pulse detection is essential for the recognition of the arrest and the recognition of return of spontaneous circulation during therapy, and it is therefore crucial for the survival of the patient. This paper introduces the first method based exclusively on the ECG for the automatic detection of pulse during cardiopulmonary resuscitation. Random forest classifier is used to efficiently combine up to nine features from the time, frequency, slope, and regularity analysis of the ECG. Data from 191 cardiac arrest patients was used, and 1177 ECG segments were processed, 796 with pulse and 381 without pulse. A leave-one-patient out cross validation approach was used to train and test the algorithm. The statistical distributions of sensitivity (SE) and specificity (SP) for pulse detection were estimated using 500 patient-wise bootstrap partitions. The mean (std) SE/SP for nine-feature classifier was 88.4 (1.8) %/89.7 (1.4) %, respectively. The designed algorithm only requires 4-s-long ECG segments and could be integrated in any commercial automated external defibrillator. The method permits to detect the presence of pulse accurately, minimizing interruptions in cardiopulmonary resuscitation therapy, and could contribute to improve survival from cardiac arrest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alonso E, Aramendi E, Daya M, Irusta U, Chicote B, Russell JK, Tereshchenko LG (2016) Circulation detection using the electrocardiogram and the thoracic impedance acquired by defibrillation pads. Resuscitation 99:56–62

    Article  PubMed  Google Scholar 

  2. Alonso E, Eftestøl T, Aramendi E, Kramer-Johansen J, Skogvoll E, Nordseth T (2014) Beyond ventricular fibrillation analysis: Comprehensive waveform analysis for all cardiac rhythms occurring during resuscitation. Resuscitation 85(11):1541–1548

    Article  PubMed  Google Scholar 

  3. Babbs CF (2013) We still need a real-time hemodynamic monitor for cpr. Resuscitation

  4. Berg RA, Hemphill R, Abella BS, Aufderheide TP, Cave DM, Hazinski MF, Lerner EB, Rea TD, Sayre MR, Swor RA (2010) Part 5: Adult basic life support 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 122(18 suppl 3):S685–S705

    Article  PubMed  Google Scholar 

  5. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  6. Brinkrolf P, Borowski M, Metelmann C, Lukas R-P, Pidde-Küllenberg L, Bohn A (2018) Predicting ROSC in out-of-hospital cardiac arrest using expiratory carbon dioxide concentration: Is trend-detection instead of absolute threshold values the key? Resuscitation 122:19–24

    Article  PubMed  Google Scholar 

  7. Chicote B, Irusta U, Alcaraz R, Rieta JJ, Aramendi E, Isasi I, Alonso D, Ibarguren K (2016) Application of entropy-based features to predict defibrillation outcome in cardiac arrest. Entropy 18(9):313

    Article  Google Scholar 

  8. Cromie NA, Allen JD, Navarro C, Turner C, Anderson JM, Adgey AAJ (2010) Assessment of the impedance cardiogram recorded by an automated external defibrillator during clinical cardiac arrest. Crit Care Med 38(2):510–517

    Article  PubMed  Google Scholar 

  9. Cromie NA, Allen JD, Turner C, Anderson JM, Adgey AAJ (2008) The impedance cardiogram recorded through two electrocardiogram/defibrillator pads as a determinant of cardiac arrest during experimental studies. Crit Care Med 36(5):1578–1584

    Article  PubMed  Google Scholar 

  10. Eberle B, Dick W, Schneider T, Wisser G, Doetsch S, Tzanova I (1996) Checking the carotid pulse check: diagnostic accuracy of first responders in patients with and without a pulse. Resuscitation 33(2):107–116

    Article  CAS  PubMed  Google Scholar 

  11. Edelson DP, Abella BS, Kramer-Johansen J, Wik L, Myklebust H, Barry AM, Merchant RM, Hoek TLV, Steen PA, Becker LB (2006) Effects of compression depth and pre-shock pauses predict defibrillation failure during cardiac arrest. Resuscitation 71(2):137–145

    Article  PubMed  Google Scholar 

  12. Figuera C, Irusta U, Morgado E, Aramendi E, Ayala U, Wik L, Kramer-Johansen J, Eftestøl T, Alonso-Atienza F (2016) Machine learning techniques for the detection of shockable rhythms in automated external defibrillators. PloS one 11(7):e0159654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning, vol 1. Springer series in statistics Springer, Berlin

    Google Scholar 

  14. Hamilton PS, Tompkins WJ (1986) Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Trans Biomed Eng BME 33(12):1157–1165

    Article  CAS  Google Scholar 

  15. Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1-3):489–501

    Article  Google Scholar 

  16. Irusta U, Ruiz J, Aramendi E, de Gauna SR, Ayala U, Alonso E (2012) A high-temporal resolution algorithm to discriminate shockable from nonshockable rhythms in adults and children. Resuscitation 83(9):1090–1097

    Article  PubMed  Google Scholar 

  17. Jekova I, Krasteva V (2004) Real time detection of ventricular fibrillation and tachycardia. Physiol Meas 25(5):1167

    Article  PubMed  Google Scholar 

  18. Koster RW, Baubin MA, Bossaert LL, Caballero A, Cassan P, Castrén M, Granja C, Handley AJ, Monsieurs KG, Perkins GD et al (2010) European resuscitation council guidelines for resuscitation 2010 section 2. Adult basic life support and use of automated external defibrillators. Resuscitation 81(10):1277–1292

    Article  PubMed  Google Scholar 

  19. Larsen MP, Eisenberg MS, Cummins RO, Hallstrom AP (1993) Predicting survival from out-of-hospital cardiac arrest: a graphic model. Ann Emerg Med 22(11):1652–1658

    Article  CAS  PubMed  Google Scholar 

  20. Losert H, Risdal M, Sterz F, Nysæther J, Köhler K, Eftestøl T, Wandaller C, Myklebust H, Uray T, Aase SO et al (2007) Thoracic-impedance changes measured via defibrillator pads can monitor signs of circulation. Resuscitation 73(2):221–228

    Article  PubMed  Google Scholar 

  21. Navarro C, Cromie NA, Turner C, Escalona OJ, Anderson JM (2011) Detection of cardiac arrest using a simplified frequency analysis of the impedance cardiogram recorded from defibrillator pads. In: 2011 annual international conference of the IEEE engineering in medicine and biology society, EMBC, pp 1709–1712. IEEE

  22. Neurauter A, Eftestøl T, Kramer-Johansen J, Abella BS, Sunde K, Wenzel V, Lindner KH, Eilevstjønn J, Myklebust H, Steen PA et al (2007) Prediction of countershock success using single features from multiple ventricular fibrillation frequency bands and feature combinations using neural networks. Resuscitation 73(2):253–263

    Article  PubMed  Google Scholar 

  23. Nyman J, Sihvonen M (2000) Cardiopulmonary resuscitation skills in nurses and nursing students. Resuscitation 47(2):179–184

    Article  CAS  PubMed  Google Scholar 

  24. Paradis NA, Halperin HR, Kern KB, Wenzel V, Chamberlain DA (2007) Cardiac arrest: the science and practice of resuscitation medicine. Cambridge University Press, Cambridge

    Book  Google Scholar 

  25. Pellis T, Bisera J, Tang W, Weil M H (2002) Expanding automatic external defibrillators to include automated detection of cardiac, respiratory, and cardiorespiratory arrest. Critical care medicine 30(4):S176–S178

    Article  PubMed  Google Scholar 

  26. Rad A B, Eftestol T, Engan K, Irusta U, Kvaloy JT, Kramer-Johansen J, Wik L, Katsaggelos AK (2017) Ecg-based classification of resuscitation cardiac rhythms for retrospective data analysis. IEEE Transactions on Biomedical Engineering

  27. Rad A B, Engan K, Katsaggelos AK, Kvaløy JT, Wik L, Kramer-Johansen J, Irusta U, Eftestøl T (2016) Automatic cardiac rhythm interpretation during resuscitation. Resuscitation 102:44–50

    Article  PubMed  Google Scholar 

  28. Risdal M, Aase SO, Kramer-Johansen J, Eftesol T (2008) Automatic identification of return of spontaneous circulation during cardiopulmonary resuscitation. IEEE Trans Biomed Eng 55(1):60–68

    Article  PubMed  Google Scholar 

  29. Ristagno G, Li Y, Fumagalli F, Finzi A, Quan W (2013) Amplitude spectrum area to guide resuscitation—a retrospective analysis during out-of-hospital cardiopulmonary resuscitation in 609 patients with ventricular fibrillation cardiac arrest. Resuscitation 84(12):1697–1703

    Article  PubMed  Google Scholar 

  30. Rittenberger JC, Menegazzi JJ, Callaway CW (2007) Association of delay to first intervention with return of spontaneous circulation in a swine model of cardiac arrest. Resuscitation 73(1):154– 160

    Article  PubMed  Google Scholar 

  31. Ruiz J, Alonso E, Aramendi E, Kramer-Johansen J, Eftestøl T, Ayala U, González-Otero D (2013) Reliable extraction of the circulation component in the thoracic impedance measured by defibrillation pads. Resuscitation 84(10):1345–1352

    Article  CAS  PubMed  Google Scholar 

  32. Soar J, Nolan JP, Böttiger BW, Perkins G D, Lott C, Carli P, Pellis T, Sandroni C, Skrifvars M B, Smith GB et al (2015) European resuscitation council guidelines for resuscitation 2015: section 3. adult advanced life support. Resuscitation 95:100–147

    Article  Google Scholar 

  33. Tibballs J, Russell P (2009) Reliability of pulse palpation by healthcare personnel to diagnose paediatric cardiac arrest. Resuscitation 80(1):61–64

    Article  PubMed  Google Scholar 

  34. Valenzuela TD, Roe DJ, Cretin S, Spaite DW, Larsen MP (1997) Estimating effectiveness of cardiac arrest interventions a logistic regression survival model. Circulation 96(10):3308–3313

    Article  CAS  PubMed  Google Scholar 

  35. Wei L, Chen G, Yang Z, Yu T, Quan W, Li Y (2017) Detection of spontaneous pulse using the acceleration signals acquired from cpr feedback sensor in a porcine model of cardiac arrest. PloS one 12(12):e0189217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wijshoff RW, van der Sar T, Peeters WH, Bezemer R, Aelen P, Paulussen IW, Ordelman SC, Venema A, van Berkom PF, Aarts RM et al (2013) Detection of a spontaneous pulse in photoplethysmograms during automated cardiopulmonary resuscitation in a porcine model. Resuscitation 84(11):1625–1632

    Article  PubMed  Google Scholar 

  37. Xiong Y, Zhan H, Lu Y, Guan K, Okoro N, Mitchell D, Dwyer M, Leatham A, Salazar G, Liao X et al (2017) Out-of-hospital cardiac arrest without return of spontaneous circulation in the field: Who are the survivors? Resuscitation 112:28–33

    Article  PubMed  Google Scholar 

Download references

Funding

This work has been partially supported by the Spanish Ministerio de Economía y Competitividad, jointly with the Fondo Europeo de Desarrollo Regional (FEDER), project TEC2015-64678-R, by the University of the Basque Country via the Ayudas a Grupos de Investigación GIU17/031 and the unit UFI11/16, and by the Basque Government through the Emaitek programme and the grant PRE_2017_1_0112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andoni Elola.

Ethics declarations

Ethical approval

The CPR process files used in this study were collected as part of an effort to develop an airway check algorithm using the capnography signal. Since these raw data files have no identifying information, the Institutional Review Board at the Oregon Health & Science University determined that the proposed activity is not human subject research because the proposed activity does not meet the definition of human subject per 45 CFR 46.102(f).

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 188 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elola, A., Aramendi, E., Irusta, U. et al. ECG-based pulse detection during cardiac arrest using random forest classifier. Med Biol Eng Comput 57, 453–462 (2019). https://doi.org/10.1007/s11517-018-1892-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-018-1892-2

Keywords

Profiles

  1. Javier Del Ser