Skip to main content

Advertisement

Log in

An inter-subject model to reduce the calibration time for motion imagination-based brain-computer interface

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A major factor blocking the practical application of brain-computer interfaces (BCI) is the long calibration time. To obtain enough training trials, participants must spend a long time in the calibration stage. In this paper, we propose a new framework to reduce the calibration time through knowledge transferred from the electroencephalogram (EEG) of other subjects. We trained the motor recognition model for the target subject using both the target’s EEG signal and the EEG signals of other subjects. To reduce the individual variation of different datasets, we proposed two data mapping methods. These two methods separately diminished the variation caused by dissimilarities in the brain activation region and the strength of the brain activation in different subjects. After these data mapping stages, we adopted an ensemble method to aggregate the EEG signals from all subjects into a final model. We compared our method with other methods that reduce the calibration time. The results showed that our method achieves a satisfactory recognition accuracy using very few training trials (32 samples). Compared with existing methods using few training trials, our method achieved much greater accuracy.

The framework of the proposed method. The workflow of the framework have three steps: 1, process each subjects EEG signals according to the target subject’s EEG signal. 2, generate models from each subjects’ processed signals. 3, ensemble these models to a final model, the final model is a model for the target subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Millán JDR, Rupp R, Müllerputz GR, Murraysmith R, Giugliemma C, Tangermann M et al (2010) Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges. Front Neurosci 4(5):161

    PubMed  PubMed Central  Google Scholar 

  2. Wilson JA, Felton EA, Garell PC, Schalk G, Williams JC (2006) Ecog factors underlying multimodal control of a brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 14(2):246–250

  3. Song J, Young BM, Nigogosyan Z, Walton LM, Nair VA, Grogan SW et al (2014) Characterizing relationships of dti, fmri, and motor recovery in stroke rehabilitation utilizing brain-computer interface technology. Frontiers in Neuroengineering 7:31

    Article  PubMed  PubMed Central  Google Scholar 

  4. Coyle S, Ward T, Markham C, Mcdarby G (2004) On the suitability of near-infrared (nir) systems for next-generation brain-computer interfaces. Physiol Meas 25(4):815–822

    Article  PubMed  Google Scholar 

  5. Zhang R, Li Y, Yan Y, Zhang H, Wu S, Yu T, Gu Z (2016) Control of a wheelchair in an indoor environment based on a brain–computer interface and automated navigation. IEEE Transactions on Neural Systems & Rehabilitation Engineering A Publication of the IEEE Engineering in Medicine & Biology Society 24(1):128–139

    Article  Google Scholar 

  6. Bhattacharyya S, Konar A, Tibarewala DN (2014) Motor imagery, p300 and error-related eeg-based robot arm movement control for rehabilitation purpose. Med Biol Eng Comput 52(12):1007–1017

    Article  PubMed  Google Scholar 

  7. Savić AM, Popović MB. (2016) Brain computer interface prototypes for upper limb rehabilitation: a review of principles and experimental results. Telecommunications forum Telfor (pp.452-459). IEEE

  8. Corralejo R, Nicolás-Alonso LF, Alvarez D, Hornero R (2014) A p300-based brain-computer interface aimed at operating electronic devices at home for severely disabled people. Med Biol Eng Comput 52(10):861–872

    Article  PubMed  Google Scholar 

  9. Wang YK, Jung TP, Lin CT (2015) Eeg-based attention tracking during distracted driving. IEEE Trans Neural Syst Rehabil Eng 23(6):1085–1094

    Article  PubMed  Google Scholar 

  10. Horki P, Solis-Escalante T, Neuper C, Müller-Putz G (2011) Combined motor imagery and ssvep based bci control of a 2 dof artificial upper limb. Med Biol Eng Comput 49(5):567–577

    Article  PubMed  Google Scholar 

  11. Punsawad Y, Wongsawat Y (2017) A multi-command ssvep-based bci system based on single flickering frequency half-field steady-state visual stimulation. Med Biol Eng Comput 55(6):965–977

    Article  PubMed  Google Scholar 

  12. Golub MD, Chase SM, Batista AP, Yu BM (2016) Brain-computer interfaces for dissecting cognitive processes underlying sensorimotor control. Curr Opin Neurobiol 37:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lotte F (2015) Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain–computer interfaces. Proc IEEE 103(6):871–890

    Article  Google Scholar 

  14. Tu W, Sun S (2013) Semi-supervised feature extraction for eeg classification. Pattern Anal Applic 16(2):213–222

    Article  Google Scholar 

  15. Meng J, Sheng X, Zhang D, Zhu X (2014) Improved semisupervised adaptation for a small training dataset in the brain-computer interface. IEEE J Biomed Health Inform 18(4):1461–1472

    Article  PubMed  Google Scholar 

  16. Chen M, Tan X, Zhang L (2016) An iterative self-training support vector machine algorithm in brain-computer interfaces. Intelligent Data Analysis 20(1):67–82

    Article  Google Scholar 

  17. Lotte F (2011) Generating artificial eeg signals to reduce bci calibration time. 5th international brain-computer Interface workshop, Graz, p 176–179

  18. Jayaram V, Alamgir M, Altun Y, Scholkopf B (2015) Transfer learning in brain-computer interfaces. IEEE Comput Intell Mag 11(1):20–31

    Article  Google Scholar 

  19. Dalhoumi S, Dray G, Montmain J (2014) Knowledge transfer for reducing calibration time in brain-computer interfacing. IEEE, international conference on TOOLS with artificial intelligence. IEEE, Limassol, p 634–639

  20. Lotte F, Guan C (2011) Regularizing common spatial patterns to improve bci designs: unified theory and new algorithms. IEEE Trans Biomed Eng 58(2):355–362

    Article  PubMed  Google Scholar 

  21. Lu H, Eng HL, Guan C, Plataniotis KN, Venetsanopoulos AN (2010) Regularized common spatial pattern with aggregation for eeg classification in small-sample setting. IEEE Trans Biomed Eng 57(12):2936–2946

    Article  PubMed  Google Scholar 

  22. Lotte F, Guan C (2010) Learning from other subjects helps reducing brain-computer Interface calibration time. IEEE International Conference on Acoustics Speech and Signal Processing, vol 23. IEEE, Arras, p 614–617

  23. Kang H, Nam Y, Choi S (2009) Composite common spatial pattern for subject-to-subject transfer. IEEE Signal Process Lett 16(8):683–686

    Article  Google Scholar 

  24. Barachant A, Bonnet S, Congedo M, Jutten C (2012) Multiclass brain-computer interface classification by riemannian geometry. IEEE Trans Biomed Eng 59(4):920–928

    Article  PubMed  Google Scholar 

  25. Tu W, Sun S (2012) A subject transfer framework for EEG classification. Neurocomputing 82:109–116

  26. Fazli S, Popescu F, Danóczy M, Blankertz B, Müller KR, Grozea C (2009) Subject-independent mental state classification in single trials. Neural Netw 22(9):1305–1312

    Article  PubMed  Google Scholar 

  27. Tu W, Sun S (2012) Dynamical ensemble learning with model-friendly classifiers for domain adaptation. International Conference on Pattern Recognition (pp.1181-1184). IEEE

  28. Pfurtscheller G, Fh LDS (1999) Event-related eeg/meg synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857

    Article  CAS  PubMed  Google Scholar 

  29. Kai KA, Zheng YC, Wang C, Guan C, Zhang H (2012) Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2b. Front Neurosci 6:39

    Google Scholar 

  30. Gouypailler C, Congedo M, Brunner C, Jutten C, Pfurtscheller G (2010) Nonstationary brain source separation for multiclass motor imagery. IEEE Trans Biomed Eng 57(2):469–478

    Article  Google Scholar 

  31. Wang H (2011) Multiclass filters by a weighted pairwise criterion for eeg single-trial classification. IEEE Trans Biomed Eng 58(5):1412–1420

    Article  PubMed  Google Scholar 

  32. Asensiocubero J, Gan JQ, Palaniappan R (2013) Multiresolution analysis over simple graphs for brain computer interfaces. J Neural Eng 10(4):046014

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported in part by National High Technology Research and Development Program of China (863 Program) under Grant 2015AA042301 and the National Natural Science Foundation of China under Grant 61773369, 61573340, 61503374.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingang Zhao.

Appendix

Appendix

  1. 1.

    Proof of \( {W}_2^{\hbox{'}}={W}_2{T}^T \)

    The process of solving \( {W}_2^{\hbox{'}} \) is a parallelism of the CSP algorithm.

    1. (1)

      Find the covariance of the two types of motion:

$$ {\mathrm{C}}_i^{\hbox{'}}={\sum}_{\mathrm{k}=1}^{\mathrm{n}}\frac{{\mathrm{D}}_{\mathrm{k}}^{\hbox{'}}\times {\mathrm{D}}_{\mathrm{k}}^{\hbox{'}\mathrm{T}}}{\mathrm{tr}\left({\mathrm{D}}_{\mathrm{k}}^{\hbox{'}}\times {\mathrm{D}}_{\mathrm{k}}^{\hbox{'}\mathrm{T}}\right)}={\sum}_{\mathrm{k}=1}^{\mathrm{n}}\frac{{\mathrm{T}\mathrm{D}}_{\mathrm{k}}^{\hbox{'}}\times {\left({\mathrm{T}\mathrm{D}}_{\mathrm{k}}^{\hbox{'}}\right)}^T}{\mathrm{tr}\left({\mathrm{D}}_k\times {\mathrm{D}}_{\mathrm{k}}^T\right)}={\mathrm{T}\mathrm{C}}_{\mathrm{i}}{\mathrm{T}}^{\mathrm{T}} $$

where n = 1, 2.

  1. (2)

    Find the whitening matrix Q'.

$$ {\displaystyle \begin{array}{l}{\mathrm{C}}^{\hbox{'}}={{\mathrm{C}}^{\hbox{'}}}_1+{\mathrm{C}}_2^{\hbox{'}}={\mathrm{T}\mathrm{CT}}^{\mathrm{T}}=\mathrm{T}\times {\mathrm{V}}_{\mathrm{C}}\sum {\mathrm{V}}_{\mathrm{C}}^{\mathrm{T}}\times {\mathrm{T}}^{\mathrm{T}}\\ {}{\mathrm{Q}}^{\hbox{'}}={\sum}^{-\frac{1}{2}}{\mathrm{V}}_{\mathrm{C}}^{\mathrm{T}}\times {\mathrm{T}}^{\mathrm{T}}={\mathrm{Q}\mathrm{T}}^{\mathrm{T}}\end{array}} $$
  1. (3)

    Calculate the whitened matrix.

$$ {\displaystyle \begin{array}{l}{\mathrm{S}}_{\mathrm{i}}=\mathrm{Q}\times {\mathrm{C}}_{\mathrm{i}}\times {\mathrm{Q}}^{\mathrm{T}}\\ {}{\mathrm{S}}_{\mathrm{i}}^{\hbox{'}}={\mathrm{Q}}^{\hbox{'}}\times {\mathrm{C}}^{\hbox{'}}\times {\mathrm{Q}}^{\hbox{'}\mathrm{T}}={\mathrm{Q}\mathrm{T}}^{\mathrm{T}}\times {\mathrm{T}\mathrm{C}}_{\mathrm{i}}{\mathrm{T}}^{\mathrm{T}}\times {\mathrm{T}\mathrm{Q}}^{\mathrm{T}}\\ {}{\mathrm{S}}_{\mathrm{i}}={\mathrm{S}}_i^{\hbox{'}}\end{array}} $$

Then, S' and S' have the same eigenvector matrixU.

  1. (4)

    CalculateW.

$$ {W}^{\hbox{'}}={U}^T\times {Q}^{\prime }={U}^T\times Q\times T=W\times {T}^T $$
  1. 2.

    Solution of the optimization:

$$ T=\mathrm{argmin}\left({\left\Vert {W}_2-{W}_1\times {T}^T\right\Vert}_F^2+\alpha {\left\Vert T-P\right\Vert}_F^2\right), st.{T}^TT=I $$

In this part, we give the details of how to solve the optimization problem in section II.A. The problem is:

$$ T=\mathrm{argmin}\left({\left\Vert {W}_2-{W}_1\times {T}^T\right\Vert}_F^2+\alpha {\left\Vert T-P\right\Vert}_F^2\right), st.{T}^TT=I $$

To easily and effectively make the calculation, the optimization problem with regular terms was transformed to an optimization formula without the regular terms. The Lagrangian multiplier method was used.

  1. (1)

    First, the target function is transformed.

\( {\left\Vert {W}_2-{W}_1\times {T}^T\right\Vert}_F^2= tr\left({W_1}^T{W}_1+{W_2}^T{W}_2\right)-2\times tr\left(T{W_1}^T{W}_2\right){\left\Vert T-P\right\Vert}_F^2= tr\left({\left(T-P\right)}^T\left(T-P\right)\right)= tr\left({T}^TT-{T}^TP-{P}^TT+{P}^TP\right) \)The constraint condition is TTT = I. Then,

\( {\left\Vert T-P\right\Vert}_F^2= tr\left(I-{T}^TP-{P}^TT+{P}^TP\right) \)We used trace to describe the orthogonality constraints. The Lagrange function is presented as follows.

L =  − tr(TA) + αtr(−TTP − PTT + I + PTP) + λtr((QTQ − I)T(QTQ − I)) where \( A={W}_1^T{W}_2 \).

  1. (2)

    The minimization condition is

$$ \Big\{{\displaystyle \begin{array}{c}\frac{\partial L}{\partial T}=0\\ {}\frac{\partial L}{\partial \lambda }=0\end{array}} $$

For the case,

$$ {\displaystyle \begin{array}{l}\frac{\partial L}{\partial T}=-\frac{\partial }{\partial T}\left( tr(TA)\right)+\alpha \frac{\partial }{\partial T}\left( tr\left(-{T}^TP-{P}^TT\right)\right)\\ {}\kern2em +\lambda \frac{\partial }{\partial T}\left( tr\left({\left({T}^TT-I\right)}^T\left({T}^TT-I\right)\right)\right)\end{array}} $$

Then,

$$ {\displaystyle \begin{array}{l}\frac{\partial L}{\partial T}=-{A}^T-2\alpha P+\lambda \frac{\partial }{\partial T}\left( tr\left({\left({T}^TT-I\right)}^T\left({T}^TT-I\right)\right)\right)\\ {}\kern1.5em ={B}^T+\lambda \frac{\partial }{\partial T}\left( tr\left({\left({T}^TT-I\right)}^T\left({T}^TT-I\right)\right)\right)\end{array}} $$

where, B = (AT + 2αP)T = A + 2αPT

  1. (3)

    For optimization problems without the regular terms α and P, \( \mathrm{T}=\mathrm{argmin}\left({\left\Vert {\mathrm{W}}_2-{\mathrm{W}}_1\times {\mathrm{T}}^{\mathrm{T}}\right\Vert}_{\mathrm{F}}^2\right),\mathrm{st}.{\mathrm{T}}^{\mathrm{T}}\mathrm{T}=\mathrm{I} \), we have a similar transformation with the previous derivation.

$$ {L}_1=- tr(TA)+\lambda tr\left({\left({T}^TT-I\right)}^T\left({T}^TT-I\right)\right) $$

The minimization condition is

$$ \Big\{{\displaystyle \begin{array}{c}\frac{\partial {L}_1}{\partial T}=0\\ {}\frac{\partial {L}_1}{\partial \lambda }=0\end{array}},\frac{\partial {L}_1}{\partial T}={A}^T+\lambda \frac{\partial }{\partial T}\left( tr\left({\left({T}^TT-I\right)}^T\left({T}^TT-I\right)\right)\right) $$
  1. (4)

    By comparing the formulas in (2) and (3), the optimization problem of the regular term can be transformed into the optimization problem without the regular term.

$$ \mathrm{T}=\mathrm{argmax}\left(\mathrm{tr}\left(\mathrm{TB}\right)\right),\mathrm{st}.{\mathrm{T}}^{\mathrm{T}}\mathrm{T}=\mathrm{I} $$

where B = A + 2αPT.

Then, the new problem is solved as follows.

  1. (1)

    The matrix B is decomposed by the SVD method.

B = UΣVT, tr(TB) = tr(TUΣVT) = tr(VTTUΣ).

Let Z = VTTU Z = VTTU,

then Z is an orthogonal matrix with the condition

|zij| ≤ 1, ∀ i, j.

  1. (2)

    Then,

$$ {\displaystyle \begin{array}{l} tr\left({V}^T TU\varSigma \right)= tr\left( Z\varSigma \right)={z}_{11}{\sigma}_1+{z}_{22}{\sigma}_2+\Big\lfloor +{z}_{nn}{\sigma}_n\\ {}\kern8.25em \le {\sigma}_1+{\sigma}_2+\Big\lfloor +{\sigma}_n\end{array}} $$

when Z = I, the equation is satisfied.

Hence, VTTU = I, T = VUT.

  1. (3)

    The final spatial filter is T = VUTT = VUT, where V, U is the result of the SVD decomposition on B.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Zhao, X., Chu, Y. et al. An inter-subject model to reduce the calibration time for motion imagination-based brain-computer interface. Med Biol Eng Comput 57, 939–952 (2019). https://doi.org/10.1007/s11517-018-1917-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-018-1917-x

Keywords

Navigation