Skip to main content
Log in

Retinal vessel optical coherence tomography images for anemia screening

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Anemia is a disease that leads to low oxygen carrying capacity in the blood. Early detection of anemia is critical for the diagnosis and treatment of blood diseases. We find that retinal vessel optical coherence tomography (OCT) images of patients with anemia have abnormal performance because the internal material of the vessel absorbs light. In this study, an automatic anemia screening method based on retinal vessel OCT images is proposed. The method consists of seven steps, namely, denoising, region of interest (ROI) extraction, layer segmentation, vessel segmentation, feature extraction, feature dimensionality reduction, and classification. We propose gradient and threshold algorithm for ROI extraction and improve region growing algorithm based on adaptive seed point for vessel segmentation. We also conduct a statistical analysis of the correlation between hemoglobin concentration and intravascular brightness and vascular shadow in OCT images before feature extraction. Eighteen statistical features and 118 texture features are extracted for classification. This study is the first to use retinal vessel OCT images for anemia screening. Experimental results demonstrate the accuracy of the proposed method is 0.8358, which indicates that the method has clinical potential for anemia screening.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kassebaum NJ, Jasrasaria R, Naghavi M, Wulf SK, Johns N, Lozano R, Regan M, Weatherall D, Chou DP, Eisele TP, Flaxman SR, Pullan RL, Brooker SJ, Murray CJL (2014) A systematic analysis of global anemia burden from 1990 to 2010. Blood 123(5):615–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bizzaro N, Antico A (2014) Diagnosis and classification of pernicious anemia. Autoimmun Rev 13(4–5):565–568

    Article  PubMed  Google Scholar 

  3. Acacio I, Goldberg MF (1973) Peripapillary and macular vessel occlusions in sickle cell anemia. Am J Ophthalmol 75(5):861–866

    Article  CAS  PubMed  Google Scholar 

  4. Overby MC, Rothman AS (1985) Multiple intracranial aneurysms in sickle cell anemia: report of two cases. J Neurosurg 62(3):430–434

    Article  CAS  PubMed  Google Scholar 

  5. Turco CD, La SC, Mantovani E et al (2014) Natural history of premacular hemorrhage due to severe acute anemia: clinical and anatomical features in two untreated patients. OSLI Retina(45):5–7. http://europepmc.org/abstract/med/24496165

  6. Sahay M, Kalra S, Badani R, Bantwal G, Bhoraskar A, Das AK, Dhorepatil B, Ghosh S, Jeloka T, Khandelwal D, Latif ZA, Nadkar M, Pathan MF, Saboo B, Sahay R, Shimjee S, Shrestha D, Siyan A, Talukdar SH, Tiwaskar M, Unnikrishnan AG (2017) Diabetes and anemia: International Diabetes Federation (IDF) - Southeast Asian region (sear) position statement. Diabetes Metab Syndr 11:S685–S695

    Article  PubMed  Google Scholar 

  7. Chen H, Chen X, Qiu Z, Xiang D, Chen W, Shi F, Zheng J, Zhu W, Sonka M (2015) Quantitative analysis of retinal layers’ optical intensities on 3D optical coherence tomography for central retinal artery occlusion. Sci Rep 5:9269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu X, Yang Z, Wang J (2016) A novel noise reduction method for optical coherence tomography images. CISP-BMEI, pp 167–171. https://ieeexplore.ieee.org/document/7852702

  9. Regatieri CV, Branchini L, Fujimoto JG, Duker JS (2012) Choroidal imaging using spectral-domain optical coherence tomography. Retina 32(5):865–876

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sakata LM, Deleonortega J, Sakata V et al (2009) Optical coherence tomography of the retina and optic nerve–a review. Clin Exp Ophthalmol 37(1):90–99

    Article  PubMed  Google Scholar 

  11. Zhu TP, Tong YH, Zhan HJ, Ma J (2014) Update on retinal vessel structure measurement with spectral-domain optical coherence tomography. Microvasc Res 95:7–14

    Article  PubMed  Google Scholar 

  12. Sonka M, Abràmoff MD (2016) Quantitative analysis of retinal OCT. Med Image Anal 33:165–169

    Article  PubMed  Google Scholar 

  13. Yumusak E, Ciftci A, Yalcin S, Sayan CD, Dikel NH, Ornek K (2015) Changes in the choroidal thickness in reproductive-aged women with iron-deficiency anemia. BMC Ophthalmol 15(1):186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mathew R, Bafiq R, Ramu J, Pearce E, Richardson M, Drasar E, Thein SL, Sivaprasad S (2015) Spectral domain optical coherence tomography in patients with sickle cell disease. Br J Ophthalmol 99(7):967–972

    Article  PubMed  Google Scholar 

  15. Chow CC, Shah RJ, Lim JI, Chau FY, Hallak JA, Vajaranant TS (2013) Peripapillary retinal nerve fiber layer thickness in sickle-cell hemoglobinopathies using spectral-domain optical coherence tomography. Am J Ophthalmol 155(3):456–464

    Article  PubMed  Google Scholar 

  16. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095

    Article  PubMed  Google Scholar 

  17. Zhao W, Lv Y, Liu Q, Qin B (2018) Detail-preserving image denoising via adaptive clustering and progressive PCA thresholding. IEEE Access 6:6303–6315

    Article  Google Scholar 

  18. Chiu SJ, Li XT, Nicholas P, Toth CA, Izatt JA, Farsiu S (2010) Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt Express 18(18):19413–19428

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen X, Niemeijer M, Zhang L et al (2012) Three-dimensional segmentation of fluid-associated abnormalities in retinal OCT: probability constrained graph-search-graph-cut. IEEE Trans Med Imaging 31(8):1521–1531

    Article  PubMed  PubMed Central  Google Scholar 

  20. Moccia S, Momi ED, Hadji SE et al (2018) Blood vessel segmentation algorithms—review of methods, datasets and evaluation metrics. Comput Methods Prog Biomed 158:71–91

    Article  Google Scholar 

  21. Jin M, Li R, Jiang J, Qin B (2017) Extracting contrast-filled vessels in X-ray angiography by graduated RPCA with motion coherency constraint. Pattern Recogn 63:653–666

    Article  Google Scholar 

  22. Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16(6):641–647

    Article  Google Scholar 

  23. Ojala T, Harwood I (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recogn 29(1):51–59

    Article  Google Scholar 

  24. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  25. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52

    Article  CAS  Google Scholar 

  26. Friedman JH (1989) Regularized discriminant analysis. J Am Stat Assoc 84(405):165–175

    Article  Google Scholar 

  27. Cacoullos T (1973) Discriminant analysis and applications. Academic Press, New York-London 69(346):583. http://www.researchgate.net/publication/270252299

  28. Yang P, Yang G (2016) Feature extraction using dual-tree complex wavelet transform and gray level co-occurrence matrix. Neurocomputing 197(C):212–220

    Article  Google Scholar 

  29. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE T Syst Man Cy (6):610–621 https://ieeexplore.ieee.org/document/4309314

  30. Weszka JS, Dyer CR, Rosenfeld A (1976) A comparative study of texture measures for terrain classification. IEEE T Syst Man Cy 6(4):269–285 https://ieeexplore.ieee.org/document/5408777

    Article  Google Scholar 

  31. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. MIT Press 15(6):1373–1396

  32. Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1):1–27

    Article  Google Scholar 

  33. Polat K, Güneş S (2009) A new feature selection method on classification of medical datasets: kernel F-score feature selection. Expert Syst Appl 36(7):10367–10373

    Article  Google Scholar 

  34. Farid DM, Zhang L, Rahman CM, Hossain MA, Strachan R (2014) Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks. Expert Syst Appl 41(4):1937–1946

    Article  Google Scholar 

  35. Amato G, Falchi F (2010) KNN based image classification relying on local feature similarity. SISAP, ACM, pp 101–108. http://www.sisap.org/2010/presentations/4.3-Falchi.pdf

  36. Yager RR (2006) An extension of the naive Bayesian classifier. Inf Sci 176(5):577–588

    Article  Google Scholar 

  37. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM TIST 2(3):27 https://www.cs.nmt.edu/~kdd/libsvm.pdf

    Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China under Grant Nos. 61672542 and 61702558.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pingbo Ouyang or Hailan Shen.

Ethics declarations

This study is approved by the ethics statement of the Second Xiangya Hospital of Central South University and with the 1964 Helsinki Declaration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Mo, Y., Ouyang, P. et al. Retinal vessel optical coherence tomography images for anemia screening. Med Biol Eng Comput 57, 953–966 (2019). https://doi.org/10.1007/s11517-018-1927-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-018-1927-8

Keywords

Navigation