Skip to main content
Log in

Grasshopper optimization algorithm–based approach for the optimization of ensemble classifier and feature selection to classify epileptic EEG signals

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Epilepsy is one of the most common neurological disease worldwide. It is diagnosed by analyzing a long electroencephalogram (EEG) recording in a clinical environment, which may be much prone to errors and a time-consuming task. In this paper, a methodology for the classification of an epileptic seizure is proposed for analyzing EEG signals. EEG signal is decomposed into intrinsic mode functions (IMFs) using empirical mode decomposition (EMD). A fusion, of the extracted non-linear and spike-based features from each of the IMF signals, is made. The parameters of five machine learning algorithms; k-nearest neighbor (k-NN), extreme learning machine (ELM), random forest (RF), support vector machine (SVM), and artificial neural network (ANN) are optimized, as well as a set of the significant features is chosen using grasshopper optimization algorithm (GOA). These classifiers with their optimized parameters are ensembled together for the classification of epileptic seizures. The results show that ensemble classifier performs better than individual classifier. A comparison of the proposed methodology with state of the art epileptic seizure detection techniques is also made for validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Epilepsy (2017) http://www.who.int/mediacentre/factsheets/fs999/en/. Accessed 25 Oct 2017

  2. Indian Epilepsy Centre (2018) http://www.indianepilepsycentre.com/faqs-incidence.html. Accessed 6 Feb 2018

  3. Subasi A, Alkan A, Koklukaya E, Kiymik MK (2005) Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing. Neural Netw 18:985–997. https://doi.org/10.1016/j.neunet.2005.01.006

    Article  PubMed  Google Scholar 

  4. Sharma R, Pachori RB (2015) Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Syst Appl 42:1106–1117. https://doi.org/10.1016/j.eswa.2014.08.030

    Article  Google Scholar 

  5. Stacey WC, Litt B (2008) Technology insight: neuroengineering and epilepsy—designing devices for seizure control. Nat Clin Pract Neurol 4:190–201. https://doi.org/10.1038/ncpneuro0750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tzallas AT, Tsipouras MG, Tsalikakis DG et al (2012) Automated epileptic seizure detection methods: a review study. In: Stevanovic D (ed) Epilepsy-histological, electroencephalographic and psychological aspects. INTECH Open Access Publisher, Croatia

    Google Scholar 

  7. Das AB, Bhuiyan MIH (2016) Discrimination and classification of focal and non-focal EEG signals using entropy-based features in the EMD-DWT domain. Biomed Signal Process Control 29:11–21. https://doi.org/10.1016/j.bspc.2016.05.004

    Article  Google Scholar 

  8. Sharma R, Pachori RB, Rajendra Acharya U (2015) An integrated index for the identification of focal electroencephalogram signals using discrete wavelet transform and entropy measures. Entropy 17:5218–5240. https://doi.org/10.3390/e17085218

    Article  Google Scholar 

  9. Sharma R, Pachori RB, Acharya UR (2015) Application of entropy measures on intrinsic mode functions for the automated identification of focal electroencephalogram signals. Entropy 17:669–691. https://doi.org/10.3390/e17020669

    Article  Google Scholar 

  10. Sharma M, Dhere A, Pachori RB, Acharya UR (2017) An automatic detection of focal EEG signals using new class of time–frequency localized orthogonal wavelet filter banks. Knowledge-Based Syst 118:217–227. https://doi.org/10.1016/j.knosys.2016.11.024

    Article  Google Scholar 

  11. Sharma R, Kumar M, Pachori RB, Acharya UR (2017) Decision support system for focal EEG signals using tunable-Q wavelet transform. J Comput Sci 20:52–60. https://doi.org/10.1016/j.jocs.2017.03.022

    Article  Google Scholar 

  12. Bhattacharyya A, Pachori RB, Acharya UR (2017) Tunable-Q wavelet transform based multivariate sub-band fuzzy entropy with application to focal EEG signal analysis. Entropy 19. https://doi.org/10.3390/e19030099

  13. Gupta V, Priya T, Yadav AK, Pachori RB, Rajendra Acharya U (2017) Automated detection of focal EEG signals using features extracted from flexible analytic wavelet transform. Pattern Recogn Lett 94:180–188. https://doi.org/10.1016/j.patrec.2017.03.017

    Article  Google Scholar 

  14. Arunkumar AN, Ramkumar RK, Venkatraman VV et al (2017) Classification of focal and non focal EEG using entropies. Pattern Recogn Lett 94:112–117. https://doi.org/10.1016/j.patrec.2017.05.007

    Article  Google Scholar 

  15. Kumar Y, Dewal ML, Anand RS (2014) Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. Signal, Image Video Process 8:1323–1334. https://doi.org/10.1007/s11760-012-0362-9

    Article  Google Scholar 

  16. Kumar Y, Dewal ML, Anand RS (2014) Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing 133:271–279. https://doi.org/10.1016/j.neucom.2013.11.009

    Article  Google Scholar 

  17. Acharya UR, Yanti R, Zheng JW et al (2013) Automated diagnosis of epilepsy using CWT, HOS and texture parameters. Int J Neural Syst 23:1350009. https://doi.org/10.1142/S0129065713500093

    Article  PubMed  Google Scholar 

  18. Song Y, Zhang J (2013) Automatic recognition of epileptic EEG patterns via extreme learning machine and multiresolution feature extraction. Expert Syst Appl 40:5477–5489. https://doi.org/10.1016/j.eswa.2013.04.025

    Article  Google Scholar 

  19. Acharya UR, Molinari F, Sree SV, Chattopadhyay S, Ng KH, Suri JS (2012) Automated diagnosis of epileptic EEG using entropies. Biomed Signal Process Control 7:401–408. https://doi.org/10.1016/j.bspc.2011.07.007

    Article  Google Scholar 

  20. Nicolaou N, Georgiou J (2012) Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Syst Appl 39:202–209. https://doi.org/10.1016/j.eswa.2011.07.008

    Article  Google Scholar 

  21. Guo L, Rivero D, Pazos A (2010) Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J Neurosci Methods 193:156–163. https://doi.org/10.1016/j.jneumeth.2010.08.030

    Article  PubMed  Google Scholar 

  22. Kumar SP, Sriraam N, Benakop PG, Jinaga BC (2010) Entropies based detection of epileptic seizures with artificial neural network classifiers. Expert Syst Appl 37:3284–3291. https://doi.org/10.1016/j.eswa.2009.09.051

    Article  Google Scholar 

  23. Gotman J, Wang LY (1991) State-dependent spike detection: concepts and preliminary results. Electroencephalogr Clin Neurophysiol 79:11–19. https://doi.org/10.1016/0013-4694(91)90151-S

    Article  CAS  PubMed  Google Scholar 

  24. Kaur M, Singh G (2017) Classification of seizure prone EEG signal using amplitude and frequency based parameters of intrinsic mode functions. J Med Biol Eng 37:540–553

    Article  Google Scholar 

  25. Djemili R, Bourouba H, Amara Korba MC (2016) Application of empirical mode decomposition and artificial neural network for the classification of normal and epileptic EEG signals. Biocybern Biomed Eng 36:285–291. https://doi.org/10.1016/j.bbe.2015.10.006

    Article  Google Scholar 

  26. Singh G, Kaur M, Singh D (2016) Detection of epileptic seizure using wavelet transformation and spike based features. In: 2015 2nd international conference on recent advances in engineering and computational sciences. RAECS 2015, pp 1–4

  27. Li S, Zhou W, Yuan Q, Geng S, Cai D (2013) Feature extraction and recognition of ictal EEG using EMD and SVM. Comput Biol Med 43:807–816. https://doi.org/10.1016/j.compbiomed.2013.04.002

    Article  PubMed  Google Scholar 

  28. Alam SMS, Bhuiyan MIH (2013) Detection of seizure and epilepsy using higher order statistics in the EMD domain. IEEE J Biomed Heal Informatics 17:312–318. https://doi.org/10.1109/JBHI.2012.2237409

    Article  Google Scholar 

  29. Pachori RB, Varun B (2011) Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Comput Methods Prog Biomed 104:373–381

    Article  Google Scholar 

  30. Subasi A, Gursoy MI, Ismail Gursoy M (2010) EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst Appl 37:8659–8666. https://doi.org/10.1016/j.eswa.2010.06.065

    Article  Google Scholar 

  31. Übeyli ED (2009) Combined neural network model employing wavelet coefficients for EEG signals classification. Digit Signal Process A Rev J 19:297–308. https://doi.org/10.1016/j.dsp.2008.07.004

    Article  Google Scholar 

  32. Chandaka S, Chatterjee A, Munshi S (2009) Cross-correlation aided support vector machine classifier for classification of EEG signals. Expert Syst Appl 36:1329–1336. https://doi.org/10.1016/j.eswa.2007.11.017

    Article  Google Scholar 

  33. Übeyli ED (2008) Wavelet/mixture of experts network structure for EEG signals classification. Expert Syst Appl 34:1954–1962. https://doi.org/10.1016/j.eswa.2007.02.006

    Article  Google Scholar 

  34. Güler I, Ubeyli ED (2005) Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J Neurosci Methods 148:113–121. https://doi.org/10.1016/j.jneumeth.2005.04.013

    Article  PubMed  Google Scholar 

  35. Pachori RB, Patidar S (2014) Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Comput Methods Prog Biomed 113:494–502. https://doi.org/10.1016/j.cmpb.2013.11.014

    Article  Google Scholar 

  36. Mainardi LT, Bianchi LM, Cerutti S (2012) Digital biomedical signal acquisition and processing. In: Liang H, Bronzino JD, Peterson DR (eds) Biosignal processing: principles and practices. CRC press, Boca Raton

    Google Scholar 

  37. Oweis RJ, Abdulhay EW (2011) Seizure classification in EEG signals utilizing Hilbert-Huang transform. Biomed Eng Online 10:38–52. https://doi.org/10.1186/1475-925X-10-38

    Article  PubMed  PubMed Central  Google Scholar 

  38. Koller D, Sahami M (1996) Toward {optimal} {feature} {selection}. In: International Conference on Machine Learning, pp 284–292

    Google Scholar 

  39. Tiwari S, Singh B, Kaur M (2017) An approach for feature selection using local searching and global optimization techniques. Neural Comput Appl 28:2915–2930. https://doi.org/10.1007/s00521-017-2959-y

    Article  Google Scholar 

  40. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    Google Scholar 

  41. Jain A, Zongker D (1997) Feature selection: evaluation, application, and small sample performance. IEEE Trans Pattern Anal Mach Intell 19:153–158

    Article  Google Scholar 

  42. Peng Y, Wu Z, Jiang J (2010) A novel feature selection approach for biomedical data classification. Comput Biomed Res 43:15

    Google Scholar 

  43. Guo L, Rivero D, Dorado J, Munteanu CR, Pazos A (2011) Automatic feature extraction using genetic programming: an application to epileptic {EEG} classification. Expert Syst Appl 38:10425–10436. https://doi.org/10.1016/j.eswa.2011.02.118

    Article  Google Scholar 

  44. Chaovalitwongse RCWAY-JFS (2007) On the time series K-nearest neighbor classification of abnormal brain activity. Syst Man Cybern Part A IEEE Trans 37:1005–1016

    Article  Google Scholar 

  45. Chen D, Wan S, Bao FS (2017) Epileptic focus localization using discrete wavelet transform based on interictal intracranial EEG. IEEE Trans neural Syst Rehabil Eng 25:413–425

    Article  Google Scholar 

  46. Song Y, Crowcroft J, Zhang J (2012) Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. J Neurosci Methods 210:132–146. https://doi.org/10.1016/j.jneumeth.2012.07.003

    Article  PubMed  Google Scholar 

  47. Chen LL, Zhang J, Zou JZ, Zhao CJ, Wang GS (2014) A framework on wavelet-based nonlinear features and extreme learning machine for epileptic seizure detection. Biomed Signal Process Control 10:1–10. https://doi.org/10.1016/j.bspc.2013.11.010

    Article  CAS  Google Scholar 

  48. Donos C, Dümpelmann M, Schulze-Bonhage A (2015) Early seizure detection algorithm based on intracranial EEG and random forest classification. Int J Neural Syst 25:1550023. https://doi.org/10.1142/S0129065715500239

    Article  PubMed  Google Scholar 

  49. Zhang T, Chen W, Li M (2017) AR based quadratic feature extraction in the VMD domain for the automated seizure detection of EEG using random forest classifier. Biomed Signal Process Control 31:550–559. https://doi.org/10.1016/j.bspc.2016.10.001

    Article  Google Scholar 

  50. Aljarah I, Al-Zoubi AM, Faris H et al (2018) Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm. Cogn Comput:1–18

  51. Hamad A, Houssein EH, Hassanien AE, Fahmy AA (2018) Hybrid grasshopper optimization algorithm and support vector Machines for automatic seizure detection in EEG signals. In: International conference on advanced machine learning technologies and applications. Springer, Cham, pp 82–91

    Google Scholar 

  52. Ibrahim HT, Mazher WJ, Ucan ON, Bayat O (2018) A grasshopper optimizer approach for feature selection and optimizing SVM parameters utilizing real biomedical data sets. Neural Comput Appl:1–10. https://doi.org/10.1007/s00521-018-3414-4

  53. Koçer S, Canal MR (2011) Classifying epilepsy diseases using artificial neural networks and genetic algorithm. J Med Syst 35:489–498. https://doi.org/10.1007/s10916-009-9385-3

    Article  PubMed  Google Scholar 

  54. Hassan R, Cohanim B, de Weck O (2004) A copmarison of particle swarm optimization and the genetic algorithm. Am Inst Aeronaut Astronaut:1–13

  55. Yalçin N, Tezel G, Karakuzu C (2015) Epilepsy diagnosis using artificial neural network learned by PSO. Turk J Electr Eng Comput Sci 23:421–432

    Article  Google Scholar 

  56. Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE (2001) Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 64:061907. https://doi.org/10.1103/PhysRevE.64.061907

    Article  CAS  Google Scholar 

  57. Tiwari AK, Pachori RB, Kanhangad V, Panigrahi BK (2017) Automated diagnosis of epilepsy using key-point based local binary pattern of EEG signals. IEEE J Biomed Heal Informatics 21:888–896. https://doi.org/10.1109/JBHI.2016.2589971

    Article  Google Scholar 

  58. Kannathal N, Choo ML, Acharya UR, Sadasivan PK (2005) Entropies for detection of epilepsy in EEG. Comput Methods Prog Biomed 80:187–194. https://doi.org/10.1016/j.cmpb.2005.06.012

    Article  CAS  Google Scholar 

  59. Ocak H (2009) Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl 36:2027–2036

    Article  Google Scholar 

  60. Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A:2297–2301

  61. Richman J, Moorman J (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Hear Circ 278:H2039–H2049

    Article  CAS  Google Scholar 

  62. Weiting Chen W, Zhizhong Wang Z, Hongbo Xie H, Wangxin Yu W (2007) Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans Neural Syst Rehabil Eng 15:266–272. https://doi.org/10.1109/TNSRE.2007.897025

    Article  PubMed  Google Scholar 

  63. Rényi A (1961) On measures of entropy and information. In: Proceedings of the fourth Berkeley symposium on mathematical statistics and probability, pp 547–561

    Google Scholar 

  64. Chen J, Li G (2014) Tsallis wavelet entropy and its application in power signal analysis. Entropy 16:3009–3025. https://doi.org/10.3390/e16063009

    Article  Google Scholar 

  65. Hjorth B (1975) An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalogr Clin Neurophysiol 39:526–530

    Article  CAS  Google Scholar 

  66. Shannon CE (2001) A mathematical theory of communication. ACM SIGMOBILE Mob Comput Commun 5:3–55

    Article  Google Scholar 

  67. Gotman J (1986) Computer analysis of EEG in epilepsy. In: Clinical applications of computer analysis of EEG and other neurophysiological signals. Elsevier, Amsterdam, pp 171–204

    Google Scholar 

  68. Gotman J (1984) Automatic recognition of interictal spikes. Electroencephalogr Clin Neurophysiol Suppl 37:93–114

    Google Scholar 

  69. Frost JD (1985) Automatic recognition and characterization of epileptiform discharges in the human EEG. J Clin Neurophysiol 2:231–250. https://doi.org/10.1097/00004691-198507000-00003

    Article  PubMed  Google Scholar 

  70. Chatrian GE, Bergamini L, Dondey M et al (1974) A glossary of terms most commonly used by clinical electroencephalographers. Electroencephalogr Clin Neurophysiol 37:538–548

    Article  Google Scholar 

  71. Van Putten MJAM, Kind T, Visser F, Lagerburg V (2005) Detecting temporal lobe seizures from scalp EEG recordings: a comparison of various features. Clin Neurophysiol 116:2480–2489. https://doi.org/10.1016/j.clinph.2005.06.017

    Article  PubMed  Google Scholar 

  72. Le Van Quyen M, Martinerie J, Baulac M, Varela F (1999) Anticipating epileptic seizures in real time by a non-linear analysis of similarity between EEG recordings. Neuroreport 10:2149–2155. https://doi.org/10.1097/00001756-199907130-00028

    Article  Google Scholar 

  73. Navarro V, Martinerie J, Le Van Quyen M et al (2002) Seizure anticipation in human neocortical partial epilepsy. Brain 125:640–655. https://doi.org/10.1093/brain/awf048

    Article  PubMed  Google Scholar 

  74. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  75. Spall JC (2005) Introduction to stochastic search and optimization: estimation, simulation, and control. John Wiley & Sons

  76. Coello Coello CA (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191:1245–1287. https://doi.org/10.1016/S0045-7825(01)00323-1

    Article  Google Scholar 

  77. Devijver PA, Kittler J (1982) Pattern recognition. A statistical approach. Prentice hall

  78. Guang-Bin H, Qin-Yu Z, Chee-Kheong S (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of International Joint Conference on Neural Networks, pp 985–990

    Google Scholar 

  79. Huang G-BG-B, Zhu Q-YQ-Y, Siew CC-KC-K et al (2006) Extreme learning machine : theory and applications. Neurocomputing 70:489–501. https://doi.org/10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  80. Bin HG, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17:879–892. https://doi.org/10.1109/TNN.2006.875977

    Article  Google Scholar 

  81. Bin HG, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70:3056–3062. https://doi.org/10.1016/j.neucom.2007.02.009

    Article  Google Scholar 

  82. Huang G Bin, Chen L (2008) Enhanced random search based incremental extreme learning machine. In: Neurocomputing. pp 3460–3468

  83. Huang GBG-BB, Chen L (2008) Enhanced random search based incremental extreme learning machine. Neurocomputing 71:3460–3468. https://doi.org/10.1016/j.neucom.2007.10.008

    Article  Google Scholar 

  84. Bartlett PL (1998) The sample complexity of pattern classification with neural networks: the size of the weight is more important than the size of the network. IEEE Trans Inf Geom 44:525–536

    Article  Google Scholar 

  85. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  86. Ho TK (1995) Random decision forest. In: Document analysis and recognition. IEEE, pp 278–282

  87. Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20:832–844. https://doi.org/10.1109/34.709601

    Article  Google Scholar 

  88. Amit Y, Geman D (1997) Shape quantization and recognition with randomized trees. Neural Comput 9:1545–1588. https://doi.org/10.1162/neco.1997.9.7.1545

    Article  Google Scholar 

  89. Vapnik V (1995) The nature of statistical learning theory. Springer Science & Business Media

  90. Kumar S (2004) Neural networks: a class room approach. Tata McGraw-Hill Education

  91. Vapnik V (2013) The nature of statistical learning theory. Springer, New York

    Google Scholar 

  92. Begg RK, Palaniswami M, Owen B (2005) Support vector machines for automated gait classification. IEEE Trans Biomed Eng 52:828–838. https://doi.org/10.1109/TBME.2005.845241

    Article  PubMed  Google Scholar 

  93. Lahmiri S (2011) A comparative study of back propagation algorithms in financial prediction. Int J Comput Sci Eng Appl 1:15–21

    Google Scholar 

  94. Kisi O, Uncuoğlu E (2005) Comparison of three back-propagation training algorithms for two case studies. NDIAN J Eng Mater Sci 12:434–442

    Google Scholar 

  95. Riedmiller M, Braun H (1993) A direct adaptive method for faster backropagation learning: the RPROP algorithm. In: Proceedings of the IEEE International Conference on Neural Networks, pp 586–591

    Chapter  Google Scholar 

  96. Moller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning supervised learning. Neural Netw 6:525–533

    Article  Google Scholar 

  97. Hagan MT, Demuth HB, Beale MH, De Jesus O (1996) Neural Network Design. PWS Publishing, Boston

    Google Scholar 

  98. Battiti R (1992) First- and second order methods for learning: between steepest descent and Newton’s method. Neural Comput 4:141–166

    Article  Google Scholar 

  99. Rokach L (2010) Ensemble-based classifiers. Artif Intell Rev 33:1–39. https://doi.org/10.1007/s10462-009-9124-7

    Article  Google Scholar 

  100. Polikar R (2006) Ensemble based systems in decision making. IEEE Cir Syst Mag 6:21–45

    Article  Google Scholar 

  101. Abualsaud K, Mahmuddin M, Saleh M, Mohamed A (2015) Ensemble classifier for epileptic seizure detection for imperfect EEG data. ScientificWorldJournal 2015:1–15. https://doi.org/10.1155/2015/945689

    Article  Google Scholar 

  102. Ahangi A, Karamnejad M, Mohammadi N, Ebrahimpour R, Bagheri N (2012) Multiple classifier system for EEG signal classification with application to brain–computer interfaces. Neural Comput Appl 23:1319–1327. https://doi.org/10.1007/s00521-012-1074-3

    Article  Google Scholar 

  103. Polat K, Gunes S (2007) Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl Math Comput 187:1017–1026. https://doi.org/10.1016/j.amc.2006.09.022

    Article  Google Scholar 

  104. Rzempoluck EJ (2012) Neural network data analysis using SimulnetTM. Springer Science & Business Media

  105. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: 14th international joint conference on artificial intelligence. Morgan Kaufmann Publishers, Montreal, pp 1137–1143

    Google Scholar 

  106. Guo L, Rivero D, Dorado J, Rabuñal JR, Pazos A (2010) Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks. J Neurosci Methods 191:101–109. https://doi.org/10.1016/j.jneumeth.2010.05.020

    Article  PubMed  Google Scholar 

  107. Übeyli ED (2010) Least squares support vector machine employing model-based methods coefficients for analysis of EEG signals. Expert Syst Appl 37:233–239. https://doi.org/10.1016/j.eswa.2009.05.012

    Article  Google Scholar 

  108. Wang D, Miao D, Xie C (2011) Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Syst Appl 38:14314–14320. https://doi.org/10.1016/j.eswa.2011.05.096

    Article  Google Scholar 

  109. Du X, Dua S, Acharya RU, Chua CK (2012) Classification of epilepsy using high-order spectra features and principle component analysis. J Med Syst 36:1731–1743. https://doi.org/10.1007/s10916-010-9633-6

    Article  PubMed  Google Scholar 

  110. Xie S, Krishnan S (2013) Wavelet-based sparse functional linear model with applications to EEGs seizure detection and epilepsy diagnosis. Med Biol Eng Comput 51:49–60. https://doi.org/10.1007/s11517-012-0967-8

    Article  PubMed  Google Scholar 

  111. Fu K, Qu J, Chai Y, Dong Y (2014) Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM. Biomed Signal Process Control 13:15–22. https://doi.org/10.1016/j.bspc.2014.03.007

    Article  Google Scholar 

  112. Lee SH, Lim JS, Kim JK, Yang J, Lee Y (2014) Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance. Comput Methods Prog Biomed 116:10–25. https://doi.org/10.1016/j.cmpb.2014.04.012

    Article  Google Scholar 

  113. Joshi V, Pachori RB, Vijesh A (2014) Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed Signal Process Control 9:1–5. https://doi.org/10.1016/j.bspc.2013.08.006

    Article  Google Scholar 

  114. Xiang J, Li C, Li H, Cao R, Wang B, Han X, Chen J (2015) The detection of epileptic seizure signals based on fuzzy entropy. J Neurosci Methods 243:18–25. https://doi.org/10.1016/j.jneumeth.2015.01.015

    Article  PubMed  Google Scholar 

  115. Peker M, Sen B, Delen D (2016) A novel method for automated diagnosis of epilepsy using complex-valued classifiers. IEEE J Biomed Heal Inf 20:108–118. https://doi.org/10.1109/JBHI.2014.2387795

    Article  Google Scholar 

  116. Tawfik NS, Youssef SM, Kholief M (2016) A hybrid automated detection of epileptic seizures in EEG records. Comput Electr Eng 53:177–190. https://doi.org/10.1016/j.compeleceng.2015.09.001

    Article  Google Scholar 

  117. Swami P, Gandhi TK, Panigrahi BK, Tripathi M, Anand S (2016) A novel robust diagnostic model to detect seizures in electroencephalography. Expert Syst Appl 56:116–130. https://doi.org/10.1016/j.eswa.2016.02.040

    Article  Google Scholar 

  118. Guo Y, Zhang Y, Mursalin M et al (2017) Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier. Neurocomputing 241:204–214. https://doi.org/10.1016/j.neucom.2017.02.053

    Article  Google Scholar 

  119. Sharma M, Pachori RB, Rajendra Acharya U (2017) A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension. Pattern Recogn Lett 94:172–179. https://doi.org/10.1016/j.patrec.2017.03.023

    Article  Google Scholar 

  120. Subasi A, Kevric J, Abdullah Canbaz M (2017) Epileptic seizure detection using hybrid machine learning methods. Neural Comput Appl:1–9. https://doi.org/10.1007/s00521-017-3003-y

  121. Li Y, Cui W, Luo M, Li K, Wang L (2018) Epileptic seizure detection based on time-frequency images of EEG signals using Gaussian mixture model and gray level co-occurrence matrix features. Int J Neural Syst 28:1850003. https://doi.org/10.1142/S012906571850003X

    Article  PubMed  Google Scholar 

  122. Hussain L, Saeed S, Awan IA, Idris A (2018) Multiscaled complexity analysis of EEG epileptic seizure using entropy-based techniques. Arch Neurosci 5:1–11. https://doi.org/10.5812/archneurosci.61161

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manpreet Kaur.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A novel epileptic EEG classification is presented.

• The fusion of non-linear and spike-based features is proposed.

• Grasshopper optimization algorithm is used to select significant features as well as to optimize two parameters of the classifiers.

• The ensemble of five classifiers with their optimized parameters is built to separate normal, interictal, and ictal EEG signals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Singh, B. & Kaur, M. Grasshopper optimization algorithm–based approach for the optimization of ensemble classifier and feature selection to classify epileptic EEG signals. Med Biol Eng Comput 57, 1323–1339 (2019). https://doi.org/10.1007/s11517-019-01951-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-01951-w

Keywords

Navigation