Skip to main content

Advertisement

Log in

Reducing the tracking drift of an uncontoured tumor for a portal-image-based dynamically adapted conformal radiotherapy treatment

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Accurate tracking of organ motion during treatment is needed to improve the efficacy of radiation therapy. This work investigates the feasibility of tracking an uncontoured target using the motion detected within a moving treatment aperture. Tracking was achieved with a weighted optical flow algorithm, and three different techniques for updating the reference image were evaluated. The accuracy and susceptibility of each approach to the accumulation of position errors were verified using a 3D-printed tumor (mounted on an actuator) and a virtual treatment aperture. Tumor motion up to 15.8 mm (peak-to-peak) taken from the breathing patterns of seven lung cancer patients was acquired using an amorphous silicon portal imager at ~ 7.5 frames/s. The first approach (INI) used the initial image detected, as a fixed reference, to determine the target motion for each new incoming image, and performed the best with the smallest errors. This method was also the most robust against the accumulation of position errors. Mean absolute errors of 0.16, 0.32, and 0.38 mm were obtained for the three methods, respectively. Although the errors are comparable to other tracking methods, the proposed method does not require prior knowledge of the tumor shape and does not need a tumor template or contour for tracking.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schweikard A, Shiomi H, Adler J (2004) Respiration tracking in radiosurgery. Med Phys 31:2738–2741

    Article  PubMed  Google Scholar 

  2. Murphy M (2004) Tracking moving organs in real time. Semin Radiat Oncol 14:91–100

    Article  PubMed  Google Scholar 

  3. Neicu T, Shirato H, Seppenwoolde Y, Jiang S (2003) Synchronized moving aperture radiation therapy (SMART): average tumour trajectory for lung patients. Phys Med Biol 48(5):587–598

    Article  PubMed  Google Scholar 

  4. Tacke M, Nill S, Oelfke U (2007) Real-time tracking of tumor motions and deformations along the leaf travel direction with the aid of a synchronized dynamic MLC leaf sequencer. Phys Med Biol 52:N505–N512

    Article  PubMed  Google Scholar 

  5. Sawant A, Venkat R, Srivastava V, Carlson D, Povzner S, Cattell H, Keall P (2008) Management of three-dimensional intrafraction motion through real-time DMLC tracking. Med Phys 35(5):2050–2061

    Article  PubMed  PubMed Central  Google Scholar 

  6. Keall P, Colvill E, O’Brien R, Ng J, Poulsen P, Eade T, Kneebone A, Booth J (2014) First clinical implementation of electromagnetic transponder-guided MLC tracking. Med Phys 41(2):020702 (5pp)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Orkisz M, Frery A, Chapet O, Mornex F, Magnin I (2001) Attempts to bronchial tumor motion tracking in portal images during conformal radiotherapy treatment. Comp Anal Images Patterns (Lect Notes in Comp Sci) 2124:247–255

    Article  Google Scholar 

  8. Meyer J, Richter A, Baier K, Wilbert J, Guckenberger M, Flentje M (2006) Tracking moving objects with megavoltage portal imaging: a feasibility study. Med Phys 33:1275–1280

    Article  PubMed  Google Scholar 

  9. Lin T, Cervino L, Tang X, Vasconcelos N, Jiang S (2009) Fluoroscopic tumor tracking for image-guided lung cancer radiotherapy. Phys Med Biol 54:981–992

    Article  PubMed  Google Scholar 

  10. Li R, Lewis J, Cervino L, Jiang S (2009) A feasibility study of markerless fluoroscopic gating for lung cancer radiotherapy using 4DCT templates. Phys Med Biol 54:N489–N500

    Article  PubMed  Google Scholar 

  11. Rottmann J, Aristophanous M, Chen A, Court L, Berbeco R (2010) A multi-region algorithm for markerless beam’s-eye view lung tumor tracking. Phys Med Biol 55:5585–5598

    Article  CAS  PubMed  Google Scholar 

  12. Xu Q, Hamilton R, Schowengerdt R, Alexander B, Jiang S (2008) Lung tumor tracking in fluoroscopic video based on optical flow. Med Phys 35(12):5351–5359

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang X, Homma N, Ichiji K, Takai Y, Yoshizawa M (2015) Tracking tumor boundary in MV-EPID images without implanted markers: a feasibility study. Med Phys 42(5):2510–2523

    Article  PubMed  Google Scholar 

  14. Kothary N, Heit J, Louie J, Kuo W, Loo B, Koong A, Chang D, Hovsepian D, Sze D, Hofmann L (2009) Safety and efficacy of percutaneous fiducial marker implantation for image-guided radiation therapy. J Vasc Interv Radiol 20:235–239

    Article  PubMed  Google Scholar 

  15. Nelson C, Starkschall G, Balter P, Morice R, Stevens C, Chang J (2007) Assessment of lung tumor motion and setup uncertainties using implanted fiducials. Int J Radiat Oncol Biol Phys 67(3):915–923

    Article  PubMed  Google Scholar 

  16. Ohn-Bar E, Sivaraman S, Trivedi M 2013 Partially occluded vehicle recognition and tracking in 3D IEEE Intelligent Vehicles Symposium IV 1350–1355

  17. Ramirez A, Ohn-Bar E and Trivedi M 2014 Go with the flow: improving multi-view vehicle detection with motion cues. Proc 22nd Int Conf Pattern Recognition (ICPR) 4140–4145

  18. Teo P, Crow R, van Nest S, Sasaki D, Pistorius S (2013) Tracking lung tumour motion using a dynamically weighted optical flow algorithm and electronic portal imaging device. Meas Sci Technol 24:074012 (15pp)

    Article  CAS  Google Scholar 

  19. Teo P, Pistorius S (2014) Tissue motion tracking at the edges of a radiation treatment field using local optical flow analysis. J Phys: Conf Series 489:012040

    Google Scholar 

  20. Harris E, Miller N, Bamber J, Symonds-Tayler J, Evans P (2010) Speckle tracking in a phantom and feature-based tracking in liver in the presence of respiratory motion using 4D ultrasound. Phys Med Biol 55(12):3363–3380

    Article  PubMed  Google Scholar 

  21. O’Shea T, Bamber J, Harris E (2016) Temporal regularization of ultrasound-based liver motion estimation for image-guided radiation therapy. Med Phys 43(1):455–465

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bell M, Byram B, Harris E, Evans P, Bamber J (2012) In vivo liver tracking with a high volume rate 4D ultrasound scanner and a 2D matrix array probe. Phys Med Biol 57:1359–1374

    Article  PubMed  Google Scholar 

  23. Teo P, Guo K, Alayoubi N, Kehler K, Pistorius S (2015) Drift correction techniques in the tracking of lung tumor motion. Proc IFMBE World Congress Med Phys Biomed Eng 51:575–578

    Google Scholar 

  24. Li W, Cosker D and Brown M 2013 An anchor patch based optimization framework for reducing optical flow drift in long-picture sequences Proc Asian Conf Comp Vision (CVMA) 112–125

  25. Gui L, Seiner J (2009) An image pattern tracking algorithm for time-resolved measurement of mini- and micro-scale motion of complex object. Algorithms 2:533–549

    Article  Google Scholar 

  26. Wang C et al. 2004 Design and implementation of a multi-purpose real-time pan-tilt visual tracking system Proc. 2004 IEEE Int Conf on Control Apps 1079–1084

  27. Murray D, Basu A (1994) Motion tracking with an active camera. IEEE Trans Pattern Analysis and Machine Intelligence 16(5):449–459

    Article  Google Scholar 

  28. Keall P, Cattell H, Pokhrel D, Dieterich S et al (2006) Geometric accuracy of a real-time target tracking system with dynamic multileaf collimator tracking system. Int J Radiat Oncol Biol Phys 65(15):79–1584

    Google Scholar 

  29. Pepin E, Wu H, Shirato H (2013) Use of dMLC for implementation of dynamic respiratory-gated radiation therapy. Med Phys 40:101708

    Article  PubMed  PubMed Central  Google Scholar 

  30. Brock K, Mutic S, McNutt TR, Li H, Kessler M (2017) Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys 44:e43–e76

    Article  CAS  PubMed  Google Scholar 

  31. Lucas B, Kanade T 1981 An iterative image registration technique with an application to stereo vision. Proc. 7th Int. Joint Conf. on Artificial Intelligence 674–9

  32. Boldea V, Sharp G, Jiang S, Sarrut D (2008) 4D-CT lung motion estimation with deformable registration: quantification of motion nonlinearity and hysteresis. Med Phys 35:1008–1018

    Article  PubMed  Google Scholar 

  33. Armato S, McLennan G, Bidaut L, McNitt-Gray G et al (2011) The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys 38(2):915–931

    Article  PubMed  PubMed Central  Google Scholar 

  34. Colvill E, Booth J, Nill S, Fast M, Bedford J, Oelfke U, Nakamura M, Poulsen P, Worm E, Hansen R, Ravkilde T, Rydhög J, Pommer T, Munck af Rosenschold P, Lang S, Guckenberger M, Groh C, Herrmann C, Verellen D, Poels K, Wang L, Hadsell M, Sothmann T, Blanck O, Keall P (2016) A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: a multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking. Radiother Oncol 119:159–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, van Herk M, Lebesque J, Miyasaka K (2002) Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 53:822–834

    Article  PubMed  Google Scholar 

  36. Suh Y, Dieterich S, Cho B, Keall P (2008) An analysis of thoracic and abdominal tumour motion for stereotactic body radiotherapy patients. Phys Med Biol 53:3623–3640

    Article  PubMed  Google Scholar 

  37. Brox T, Malik J (2011) Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans Pattern Anal Mach Intell 33:500–513

    Article  PubMed  Google Scholar 

  38. Badino H, Yamamoto A, Kanade T 2013 Visual odometry by multi-frame feature integration Proc, 2013 IEEE International Conference on Computer Vision Workshops (ICCVW), 222–229

  39. Yip S, Rottmann J, Berbeco R (2014) The impact of cine EPID image acquisition frame rate on markerless soft-tissue tracking. Med Phys 41:061702 (7pp)

    Article  PubMed  PubMed Central  Google Scholar 

  40. Berbeco R, Mostafavi H, Sharp G, Jiang S (2005) Towards fluoroscopic respiratory gating for lung tumours without radiopaque markers. Phys Med Biol 50:4481–4490

    Article  PubMed  Google Scholar 

  41. Tanaka R, Sanada S, Sakuta K, Kawashima H (2015) Improved accuracy of markerless motion tracking on bone suppression images: preliminary study for image-guided radiation therapy. Phys Med Biol 60:N209–N218

    Article  PubMed  Google Scholar 

  42. Shirato H, Shimizu S, Kitamura K, Nishioka T, Kagei K, Hashimoto S, Aoyama H, Kunieda T, Shinohara N, Dosaka-Akita H, Miyasaka K (2000) Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int J Radiat Oncol Biol Phys 48:435–442

    Article  CAS  PubMed  Google Scholar 

  43. Menten M, Guckenberger M, Herrmann C, Kraub A, Nill S, Oelfke U, Wilbert J (2012) Comparison of a multileaf collimator tracking system and a robotic treatment couch tracking system for organ motion compensation during radiotherapy. Med Phys 39:7032–7041

    Article  PubMed  Google Scholar 

  44. Fortun D, Bouthemy P, Kervrann C (2015) Optical flow modeling and computation: a survey. Comput Vis Image Underst Elsevier 134:1–21

    Article  Google Scholar 

  45. Teo TP, Ahmed SB, Kawalec P, Alayoubi N, Bruce N, Lyn E, Pistorius S (2018) Feasibility of predicting tumor motion using online data acquired during treatment and a generalized neural network optimized with offline patient tumor trajectories. Med Phys 45(2):830–845

    Article  PubMed  Google Scholar 

  46. McCowan P, Rickey D, Rowshanfarzad P, Greer P, Ansbacher W, McCurdy B (2014) Investigation of gantry angle data accuracy for cine-mode EPID images acquired during arc-IMRT. J Appl Clin Med Phys 15(1)

  47. Adamson J, Wu Q (2012) Independent verification of gantry angle for pre-treatment VMAT QA using EPID. Phys Med Biol 57(20):6587–6600

    Article  PubMed  Google Scholar 

  48. Ge Y, O’Brien R, Shieh C, Booth J, Keall P (2014) Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator. Med Phys 41(6):061703

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yang J, Yamamoto T, Mazin S, Graves E, Keall P (2014) The potential of positron emission tomography for intratreatment dynamic lung tumor tracking: a phantom study. Med Phys 41(2):021718

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the Cancer Care Manitoba Foundation, MITACS-Accelerate Manitoba, the Manitoba Health Research Council, and the Natural Sciences and Engineering Research Council of Canada. We are grateful for the comments and suggestions provided by Dr. Boyd McCurdy in our preparation of this manuscript. The CyberKnife tumor motion dataset [36] from Dr. YeLin Suh is much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Troy Teo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Using mathematical induction to formulate the equations for the position of aperture and targets

In the first method (INI), direct registration with an initial reference frame was performed for every image (Fig. 1). The optical flow algorithm was applied to determine the interframe displacements between all images with the initial image. Following the method of induction, the initial position of the aperture Posaperture(1) and target Postarget(1) are given in Eqs. (14) and (15). This assumes that the target was positioned at the isocenter verified by the setup procedure. Without prior motion information, the position of the aperture in the second image Posaperture(2) is given by Eq. (16):

Initial conditions:

$$ {\mathrm{Pos}}_{\mathrm{aperture}}(1)=0 $$
(14)
$$ {\mathrm{Pos}}_{\mathrm{target}}(1)=0 $$
(15)
$$ {\mathrm{Pos}}_{\mathrm{aperture}}(2)=0 $$
(16)

Applying tracking between the first and second image provides the displacement of the target given by the optical flow vector OFDIR(1):

Subsequent motion tracking:

$$ {\mathrm{Pos}}_{\mathrm{target}}(2)={\mathrm{Pos}}_{\mathrm{aperture}}(2)+{\mathrm{OF}}_{\mathrm{INI}}(1)={\mathrm{OF}}_{\mathrm{INI}}(1) $$
(17)

where OFINI(1) = OF(IM(1), IM(2)) is the weighted average value of the optical flow vectors obtained between IM(1) and IM(2).

To maintain tracking of the object, the aperture position Posaperture(3) in the subsequent image IM(3) was updated following the object motion OFINI(1). The position of the target in that aperture would then be given, respectively, by:

$$ {\mathrm{Pos}}_{\mathrm{aperture}}(3)={\mathrm{Pos}}_{\mathrm{aperture}}(2)+{\mathrm{OF}}_{\mathrm{INI}}(1)={\mathrm{Pos}}_{\mathrm{aperture}}(1)+{\mathrm{OF}}_{\mathrm{ini}}(1) $$
(18)
$$ {\mathrm{Pos}}_{\mathrm{target}}(3)={\mathrm{Pos}}_{\mathrm{aperture}}(3)+{\mathrm{OF}}_{\mathrm{INI}}(2)=\left[{\mathrm{Pos}}_{\mathrm{aperture}}(2)+{\mathrm{OF}}_{\mathrm{INI}}(1)\right]+{\mathrm{OF}}_{\mathrm{INI}}(2)=\left[{\mathrm{Pos}}_{\mathrm{aperture}}(1)+{\mathrm{OF}}_{\mathrm{INI}}(1)\right]+{\mathrm{OF}}_{\mathrm{INI}}(2) $$
(19)

where Posaperture(1) and Posaperture(2) are defined in Eqs. (14) and (16), respectively. Similarly, the position of the aperture in the fourth image frame Posaperture(4) was obtained by updating its position from image IM(3) with the computed motion given by OFINI(2) and the target positon determined by OFINI(3):

$$ {\mathrm{Pos}}_{\mathrm{aperture}}(4)={\mathrm{Pos}}_{\mathrm{aperture}}(3)+{\mathrm{OF}}_{\mathrm{INI}}(2)=\left[{\mathrm{Pos}}_{\mathrm{aperture}}(1)+{\mathrm{OF}}_{\mathrm{INI}}(1)\right]+{\mathrm{OF}}_{\mathrm{INI}}(2) $$
(20)
$$ {\mathrm{Pos}}_{\mathrm{target}}(4)={\mathrm{Pos}}_{\mathrm{aperture}}(4)+{\mathrm{OF}}_{\mathrm{INI}}(3)=\left[{\mathrm{Pos}}_{\mathrm{aperture}}(2)+{\mathrm{OF}}_{\mathrm{INI}}(2)+{\mathrm{OF}}_{\mathrm{INI}}(1)\right]+{\mathrm{OF}}_{\mathrm{INI}}(3)={\mathrm{Pos}}_{\mathrm{aperture}}(1)+{\mathrm{OF}}_{\mathrm{INI}}(1)+{\mathrm{OF}}_{\mathrm{INI}}(2)+{\mathrm{OF}}_{\mathrm{INI}}(3) $$
(21)

For the ith image (i.e., IM(i)), the generalized representation of the position of the aperture and target can be written as:

For the ith image:

$$ {\mathrm{Pos}}_{\mathrm{aperture}}(i)={\mathrm{Pos}}_{\mathrm{aperture}}(1)+\sum \limits_i^n{\mathrm{OF}}_{\mathrm{INI}}\left(i-2\right);\kern1.75em i>3 $$
(22)
$$ {\mathrm{Pos}}_{\mathrm{target}}(i)={\mathrm{Pos}}_{\mathrm{aperture}}(1)+\sum \limits_i^n{\mathrm{OF}}_{\mathrm{INI}}\left(i-1\right);\kern2em i>2 $$
(23)

where OFINI (i) = OF( IM(1), IM(i + 1) ) was obtained by computing the optical flow of image IM(i + 1) with the reference image IM(1). Letting Posaperture(1) = P0:

$$ {\mathrm{Pos}}_{\mathrm{aperture}}(i)=\Big\{{\displaystyle \begin{array}{c}{P}_0\\ {}{P}_0+\sum \limits_i^n{\mathrm{OF}}_{\mathrm{INI}}\left(i-2\right);\end{array}}\kern0.5em {\displaystyle \begin{array}{c}i=1,2\\ {}i\ge 3\end{array}} $$
(24)
$$ {\mathrm{Pos}}_{\mathrm{target}}(i)={P}_0+\sum \limits_i^n{\mathrm{OF}}_{\mathrm{INI}}\left(i-1\right);\kern4.25em i\ge 2 $$
(25)

Following the motion detected using the INI method, the generalized expressions for the position of the aperture and the target at image IM(i) are provided by Eqs. (24) and (25), respectively, which are similar to Eqs. (1) and (2) shown in the main manuscript. A similar approach was used to formulate the expressions for the other two methods, i.e., SEQ and PERD methods.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teo, P.T., Guo, K., Fontaine, G. et al. Reducing the tracking drift of an uncontoured tumor for a portal-image-based dynamically adapted conformal radiotherapy treatment. Med Biol Eng Comput 57, 1657–1672 (2019). https://doi.org/10.1007/s11517-019-01981-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-01981-4

Keywords