Skip to main content
Log in

Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This work presents a classification performance comparison between different frameworks for functional connectivity evaluation and complex network feature extraction aiming to distinguish motor imagery classes in electroencephalography (EEG)-based brain-computer interfaces (BCIs). The analysis was performed in two online datasets: (1) a classical benchmark—the BCI competition IV dataset 2a—allowing a comparison with a representative set of strategies previously employed in this BCI paradigm and (2) a statistically representative dataset for signal processing technique comparisons over 52 subjects. Besides exploring three classical similarity measures—Pearson correlation, Spearman correlation, and mean phase coherence—this work also proposes a recurrence-based alternative for estimating EEG brain functional connectivity, which takes into account the recurrence density between pairwise electrodes over a time window. These strategies were followed by graph feature evaluation considering clustering coefficient, degree, betweenness centrality, and eigenvector centrality. The features were selected by Fisher’s discriminating ratio and classification was performed by a least squares classifier in agreement with classical and online BCI processing strategies. The results revealed that the recurrence-based approach for functional connectivity evaluation was significantly better than the other frameworks, which is probably associated with the use of higher order statistics underlying the electrode joint probability estimation and a higher capability of capturing nonlinear inter-relations. There were no significant differences in performance among the evaluated graph features, but the eigenvector centrality was the best feature regarding processing time. Finally, the best ranked graph-based attributes were found in classical EEG motor cortex positions for the subjects with best performances, relating functional organization and motor activity.

Evaluating functional connectivity based on Space-Time Recurrence Counting for motor imagery classification in brain-computer interfaces. Recurrences are evaluated between electrodes over a time window, and, after a density threshold, the electrodes adjacency matrix is stablish, leading to a graph. Graph-based topological measures are used for motor imagery classification

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wolpaw J, Wolpaw EW (2012) Brain computer interfaces: principles and practice. Oxford University Press

  2. Iacoviello D, Petracca A, Spezialetti M, Placidi G (2015) A real-time classification algorithm for EEG-based BCI driven by self-induced emotions. Comput Methods Programs Biomed 122(3):293–303

    Article  Google Scholar 

  3. Buch ER, Modir Shanechi A, Fourkas AD, Weber C, Birbaumer N, Cohen LG (2012) Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke. Brain 135(2):596–614

    Article  Google Scholar 

  4. Donati ARC, Shokur S, Morya E, Campos DSF, Moioli RC, Gitti CM, Augusto PB, Tripodi S, Pires CG, Pereira GA, Brasil FL, Gallo S, Lin AA, Takigami AK, Aratanha MA, Joshi S, Bleuler H, Cheng G, Rudolph A, Nicolelis MAL (2016) Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Sci Rep 6:30383

    Article  CAS  Google Scholar 

  5. Rohani DA, Henning WS, Thomsen CE, Kjaer TW, Puthusserypady S, Sorensen HB (2013) BCI using imaginary movements: the simulator. Comput Methods Programs Biomed 111(2):300–307

    Article  Google Scholar 

  6. Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1(1):13–36

    Article  Google Scholar 

  7. Sporns O (2011) Networks of the brain. The MIT Press

  8. Sakkalis V (2011) Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput Biol Med 41(12):1110–1117

    Article  CAS  Google Scholar 

  9. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3):1059–1069

    Article  Google Scholar 

  10. Jalili M (2016) Functional brain networks: does the choice of dependency estimator and binarization method matter? Sci Rep 6(1):29780

    Article  CAS  Google Scholar 

  11. Bullmore ET, Bassett DS (2011) Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol 7:113–40

    Article  Google Scholar 

  12. Me Lynall, Bassett DS, Kerwin R, Mckenna PJ, Müller U, Bullmore E (2010) Functional connectivity and brain networks in schizophrenia. J Neurosci 30(28):9477–9487

    Article  Google Scholar 

  13. Jalili M, Knyazeva MG (2011) EEG-based functional networks in schizophrenia. Comput Biol Med 41 (12):1178–1186

    Article  Google Scholar 

  14. Ray KL, Lesh TA, Howell AM, Salo TP, Ragland JD, MacDonald AW, Gold JM, Silverstein SM, Barch DM, Carter CS (2017) Functional network changes and cognitive control in schizophrenia. NeuroImage: Clinical 15:161–170

    Article  Google Scholar 

  15. Sheffield JM, Repovs G, Harms MP, Carter CS, Gold JM, Macdonald AW, Ragland JD, Silverstein SM, Godwin D, Barch DM (2016) Evidence for accelerated decline of functional brain network efficiency in schizophrenia. Schizophr Bull 42(3):753–761

    Article  Google Scholar 

  16. Chhatwal JP, Schultz AP, Johnson KA, Hedden T, Jaimes S, Benzinger TLS, Jack C, Ances BM, Ringman JM, Marcus DS, Ghetti B, Farlow MR, Danek A, Levin J, Yakushev I, Laske C, Koeppe RA, Galasko DR, Xiong C, Masters CL, Schofield PR, Kinnunen KM, Salloway S, Martins RN, McDade E, Cairns NJ, Buckles VD, Morris JC, Bateman R, Sperling RA (2018) Preferential degradation of cognitive networks differentiates Alzheimer’s disease from ageing. Brain

  17. Franzmeier N, Hartmann J, Taylor ANW, Araque-Caballero M, Simon-Vermot L, Kambeitz-Ilankovic L, Bürger K, Catak C, Janowitz D, Müller C, Ertl-Wagner B, Stahl R, Dichgans M, Duering M, Ewers M (2018) The left frontal cortex supports reserve in aging by enhancing functional network efficiency. Alzheimer’s Res Therapy 10(1):28

    Article  Google Scholar 

  18. Babiloni C, Del Percio C, Lizio R, Noce G, Lopez S, Soricelli A, Ferri R, Nobili F, Arnaldi D, Famà F, Aarsland D, Orzi F, Buttinelli C, Giubilei F, Onofrj M, Stocchi F, Stirpe P, Fuhr P, Gschwandtner U, Ransmayr G, Garn H, Fraioli L, Pievani M, Frisoni GB, D’Antonio F, De Lena C, Güntekin B, Hanoǧlu L, Başar E, Yener G, Emek-Savaş DD, Triggiani AI, Franciotti R, Taylor JP, Vacca L, De Pandis MF, Bonanni L (2018) Abnormalities of resting-state functional cortical connectivity in patients with dementia due to Alzheimer’s and Lewy body diseases: an EEG study. Neurobiol Aging 65:18–40

    Article  Google Scholar 

  19. Owens-Walton C, Jakabek D, Li X, Wilkes FA, Walterfang M, Velakoulis D, van Westen D, Looi JC, Hansson O (2018) Striatal changes in Parkinson disease: an investigation of morphology functional connectivity and their relationship to clinical symptoms. Psychiatry Research, Neuroimaging

  20. Dıez-Cirarda M, Strafella AP, Kim J, Peña J, Ojeda N, Cabrera-Zubizarreta A, Ibarretxe-Bilbao N (2018) Dynamic functional connectivity in Parkinson’s disease patients with mild cognitive impairment and normal cognition. NeuroImage: Clinical 17:847–855

    Article  Google Scholar 

  21. Sargolzaei S, Cabrerizo M, Goryawala M, Eddin AS, Adjouadi M (2013) Functional connectivity network based on graph analysis of scalp EEG for epileptic classification. In: In 2013 IEEE Signal processing in medicine and biology symposium (SPMB). IEEE, pp 1–4

  22. Pedersen M, Omidvarnia AH, Walz JM, Jackson GD (2015) Increased segregation of brain networks in focal epilepsy: an fMRI graph theory finding. NeuroImage: Clinical 8:536–542

    Article  Google Scholar 

  23. Yang H, Zhang C, Liu C, Yu T, Zhang G, Chen N, Li K (2018) Brain network alteration in patients with temporal lobe epilepsy with cognitive impairment. Epilepsy Behav 81:41–48

    Article  Google Scholar 

  24. Roberts JA, Friston KJ, Breakspear M (2017) Clinical applications of stochastic dynamic models of the brain, part i: a primer. Biolog Psych: Cogn Neurosci Neuroimag 2(3):216–224

    Google Scholar 

  25. Yang J, Lee J (2018) Different aberrant mentalizing networks in males and females with autism spectrum disorders: evidence from resting-state functional magnetic resonance imaging. Autism 22(2):134–148

    Article  Google Scholar 

  26. Bernas A, Barendse EM, Aldenkamp AP, Backes WH, Hofman PAM, Hendriks MPH, Kessels RPC, Willems FMJ, de With PHN, Zinger S, Jansen JFA (2018) Brain resting-state networks in adolescents with high-functioning autism: analysis of spatial connectivity and temporal neurodynamics. Brain Behav 8(2): e00878

    Article  Google Scholar 

  27. Leuchter AF, Cook IA, Hunter AM, Cai C, Horvath S (2012) Resting-state quantitative electroencephalography reveals increased neurophysiologic connectivity in depression. PLoS ONE, 7(2)

  28. dos Santos Siqueira A, Biazoli Junior CE, Comfort WE, Rohde LA, Sato JR (2014) Abnormal functional resting-state networks in ADHD: graph theory and pattern recognition analysis of fMRI data. BioMed Research International, pp 1–10

  29. Barnett A, Audrain S, McAndrews MP (2017) Applications of resting-state functional MR imaging to epilepsy. Neuroimaging Clin N Am 27(4):697–708

    Article  Google Scholar 

  30. Dierker D, Roland JL, Kamran M, Rutlin J, Hacker CD, Marcus DS, Milchenko M, Miller-Thomas MM, Benzinger TL, Snyder AZ, Leuthardt EC, Shimony JS (2017) Resting-state functional magnetic resonance imaging in presurgical functional mapping. Neuroimaging Clin N Am 27(4):621–633

    Article  Google Scholar 

  31. Sair HI, Agarwal S, Pillai JJ (2017) Application of resting state functional MR imaging to presurgical mapping. Neuroimaging Clin N Am 27(4):635–644

    Article  Google Scholar 

  32. Saiote C, Tacchino A, Brichetto G, Roccatagliata L, Bommarito G, Cordano C, Battaglia M, Mancardi GL, Inglese M (2016) Resting-state functional connectivity and motor imagery brain activation. Hum Brain Mapp 37(11):3847–3857

    Article  Google Scholar 

  33. Athanasiou A, Klados MA, Styliadis C, Foroglou N, Polyzoidis K, Bamidis PD (2016) Investigating the role of alpha and beta rhythms in functional motor networks. Neuroscience

  34. Hamedi M, Salleh SH, Noor AM (2016) Electroencephalographic motor imagery brain connectivity analysis for BCI: a review. Neural Comput 28(6):999–1041

    Article  Google Scholar 

  35. Daly I, Nasuto SJ, Warwick K (2012) Brain computer interface control via functional connectivity dynamics. Pattern Recogn 45(6):2123–2136

    Article  Google Scholar 

  36. Grosse-Wentrup M (2009) Understanding brain connectivity patterns during motor imagery for brain-computer interfacing. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in neural information processing systems, vol 21. Curran Associates, Inc., pp 561–568

  37. Chung YG, Kang JH, Kim SP (2011) Analysis of correlated EEG activity during motor imagery for brain-computer interfaces. In: 2011 11th International conference on control, automation and Systems (ICCAS). IEEE, Gyeonggi-do

  38. Zhang H, Chavarriaga R, Millán JdR (2014) Towards implementation of motor imagery using brain connectivity features. In: 6th International brain-computer interface conference. Graz

  39. Zhang R, Yao D, Valdés-Sosa PA, Li F, Li P, Zhang T, Ma T, Li Y, Xu P (2015) Efficient resting-state EEG network facilitates motor imagery performance. J Neural Eng 12(6):066024

    Article  Google Scholar 

  40. Stefano Filho CA, Attux R, Castellano G (2016) Graph centrality measures for assessing motor imagery tasks: an offline analysis for EEG-BCIs. In: XXV Brazilian congress on biomedical engineering (CBEB). Foz do Iguaċu, pp 1386–1389

  41. Santamaria L, James C (2016) Use of graph metrics to classify motor imagery based BCI. In: 2016 international conference for students on applied engineering (ISCAE). IEEE, pp 469–474

  42. Gonuguntla V, Wang Y, Veluvolu KC (2016) Event-related functional network identification: application to EEG classification. IEEE J Selected Topics Signal Process 10(7):1284–1294

    Article  Google Scholar 

  43. Hamedi M, Salleh SH, Samdin SB, Noor AM (2015) Motor imagery brain functional connectivity analysis via coherence. In: 2015 IEEE International conference on signal and image processing applications (ICSIPA), pp 269–273

  44. Marwan N, Carmen Romano M, Thiel M, Kurths J (2007) Recurrence plots for the analysis of complex systems. Phys Rep 438(5–6):237–329

    Article  Google Scholar 

  45. Marwan N, Kurths J (2002) Nonlinear analysis of bivariate data with cross recurrence plots. Phys Lett Section A: General Atomic Solid State Phys 302(5–6):299–307

    Article  CAS  Google Scholar 

  46. Duda RO, Hart PE, Stork DG (2000) Pattern classification. Wiley-Interscience

  47. Carvalho SN, Costa TB, Uribe LF, Soriano DC, Yared GF, Coradine LC, Attux R (2015) Comparative analysis of strategies for feature extraction and classification in SSVEP BCIs. Biomed Signal Process Control 21:34–42

    Article  Google Scholar 

  48. Carvalho SN, Costa TBS, Uribe LFS, Soriano DC, Almeida SRM, Min LL, Castellano G, Attux R (2015) Effect of the combination of different numbers of flickering frequencies in an SSVEP-BCI for healthy volunteers and stroke patients. In: 2015 7th International IEEE/EMBS conference on neural engineering (NER). IEEE, pp 78–81

  49. Blankertz B (2008) BCI competition IV. http://www.bbci.de/competition/iv/

  50. Tangermann M, Müller K R, Aertsen A, Birbaumer N, Braun C, Brunner C, Leeb R, Mehring C, Miller KJ, Müller-Putz G R, Nolte G, Pfurtscheller G, Preissl H, Schalk G, Schlögl A, Vidaurre C, Waldert S, Blankertz B (2012) Review of the BCI competition IV. Front Neurosci 6:1–31

    Article  Google Scholar 

  51. Cho H, Ahn M, Ahn S, Kwon M, Jun SC (2017) EEG datasets for motor imagery brain-computer interface. GigaScience 6(7):1–8

    Article  Google Scholar 

  52. McFarland DJ, McCane LM, David SV, Wolpaw JR (1997) Spatial filter selection for EEG-based communication. Electroencephalogr Clin Neurophysiol 103(3):386–394

    Article  CAS  Google Scholar 

  53. Myers J, Well A (2003) Research design and statistical analysis, 2nd edn. Lawrence Erlbaum Associates, London

    Book  Google Scholar 

  54. Mormann F, Lehnertz K, David P, E Elger C (2000) Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D: Nonlinear Phenomena 144(3):358–369

    Article  Google Scholar 

  55. Park SA, Hwang HJ, Lim JH, Choi JH, Jung HK, Im CH (2013) Evaluation of feature extraction methods for EEG-based brain-computer interfaces in terms of robustness to slight changes in electrode locations. Med Biol Eng Comput 51(5):571–9

    Article  Google Scholar 

  56. Zhang J, Small M (2006) Complex network from pesudoperiodic time series: topology versus dynamics. Phys Rev Lett 96:238701

    Article  CAS  Google Scholar 

  57. Marwan N, Donges JF, Zou Y, Donner RV (2009) Complex network approach for recurrence analysis of time series. Phys Lett A 373(46):4246–4254

    Article  CAS  Google Scholar 

  58. Donner RV, Small M, Donges JF, Marwan N, Zou Y, Xiang R, Kurths J (2011) Recurrence-based time series analysis by means of complex network methods. Int J Bifur Chaos 21(04):1019–1046

    Article  Google Scholar 

  59. Yang H, Gang L (2013) Self-organized topology of recurrence-based complex networks. Chaos 23:043116

    Article  Google Scholar 

  60. Hu Y (2005) Efficient and high quality force-directed graph drawing. Math J 10(1):37–71

    Google Scholar 

  61. Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, Schloegl H, Stumvoll M, Villringer A, Turner R (2010) Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS ONE 5(4):e10232

    Article  Google Scholar 

  62. Theodoridis S, Koutroumbas K (2009) Pattern recognition, 4th edn. Academic Press

  63. Stefano Filho CA, Campos BM, Costa TBS, Uribe LFS, Barreto CSF, Attux R, Castellano G (2016) Graphs metrics as features for an LDA based classifier for motor imagery data. J Epilepsy Clinical Neurophysioly 22:3

    Google Scholar 

  64. Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857

    Article  CAS  Google Scholar 

  65. Stefano Filho CA, Attux R, Castellano G (2018) Can graph metrics be used for EEG-BCIs based on hand motor imagery? Biomedl Signal Process Control 40:359–365

    Article  Google Scholar 

  66. Demuru M, Fara F, Fraschini M (2013) Brain network analysis of EEG functional connectivity during imagery hand movements. J Integr Neurosci 12(04):441–447

    Article  Google Scholar 

  67. Asensio-Cubero J, Gan JQ, Palaniappan R (2016) Multiresolution analysis over graphs for a motor imagery based online BCI game. Comput Biol Med 68:21–26

    Article  Google Scholar 

  68. Bianciardi M, Sirabella P, Hagberg GE, Giuliani A, Zbilut JP, Colosimo A (2007) Model-free analysis of brain fMRI data by recurrence quantification. Neuroimage 37(2):489–503

    Article  Google Scholar 

  69. Webber CL, Giuliani A, Zbilut JP, Colosimo A (2001) Elucidating protein secondary structures using alpha-carbon recurrence quantifications. Proteins 44(3):292–303

    Article  CAS  Google Scholar 

  70. Webber CL, Zbilut JP (2007) Recurrence quantifications: feature extractions from recurrence plots. Int J Bifur Chaos 17(10):3467–3475

    Article  Google Scholar 

  71. Uribe LFS, Fazanaro FI, Castellano G, Suyama R, Attux R, Cardozo E, Soriano DC (2014) A recurrence-based approach for feature extraction in brain-computer interface systems. In: Marwan N, Riley M, Giuliani A, Webber JrC L (eds). Springer, Translational recurrences, pp 95–107

  72. Roberts SJ, Penny W, Rezek I (1999) Temporal and spatial complexity measures for electroencephalogram based brain-computer interfacing. Med Biol Eng Comput 37(1):93–8

    Article  CAS  Google Scholar 

  73. Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica D: Nonlinear Phenomena 9(1–2):189–208

    Article  Google Scholar 

  74. Prichard D, Theiler J (1995) Generalized redundancies for time series analysis. Physica D: Nonlinear Phenomena 84(3–4):476–493

    Article  Google Scholar 

  75. Manuca R, Savit R (1996) Stationarity and nonstationarity in time series analysis. Physica D: Nonlinear Phenomena 99(2–3):134–161

    Article  Google Scholar 

  76. Weifeng L, Pokharel P, Principe J (2006) Correntropy: a localized similarity measure. In: The 2006 IEEE international joint conference on neural network proceedings. IEEE, pp 4919–4924

  77. Liu W, Pokharel PP, Principe JC (2007) Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans Signal Process 55(11):5286–5298

    Article  Google Scholar 

  78. Mahmoudi B, Erfanian A (2006) Electro-encephalogram based brain-computer interface: improved performance by mental practice and concentration skills. Med Biol Eng Comput 44(11):959–69

    Article  Google Scholar 

  79. Aliakbaryhosseinabadi S, Kamavuako EN, Jiang N, Farina D, Mrachacz-Kersting N (2017) Classification of EEG signals to identify variations in attention during motor task execution. J Neurosci Methods 284:27–34

    Article  Google Scholar 

  80. Fall S, De Marco G (2008) Assessment of brain interactivity in the motor cortex from the concept of functional connectivity and spectral analysis of fMRI data. Biol Cybern 98(2):101–114

    Article  CAS  Google Scholar 

Download references

Funding

This work received financial support from FAPESP (no. 2015/24260-7, 2013/07559-3, 2017/10341-0 and 2016-22116-9), CNPq (nos. 449467/2014-7, 305621/2015-7, 305616/2016-1 and 142229/2016-4), and FINEP (no. 01.16.0067.00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula G. Rodrigues.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, P.G., Filho, C.A.S., Attux, R. et al. Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces. Med Biol Eng Comput 57, 1709–1725 (2019). https://doi.org/10.1007/s11517-019-01989-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-01989-w

Keywords

Navigation