Skip to main content
Log in

Sinusoidal vibrotactile stimulation differentially improves force steadiness depending on contraction intensity

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Studies have reported the benefits of sensory noise in motor performance, but it is not clear if this phenomenon is influenced by muscle contraction intensity. Additionally, most of the studies investigated the role of a stochastic noise on the improvement of motor control and there is no evidence that a sinusoidal vibrotactile stimulation could also enhance motor performance. Eleven participants performed a sensorimotor task while sinusoidal vibrations were applied to the finger skin. The effects of an optimal vibration (OV) on force steadiness were evaluated in different contraction intensities. We assessed the standard deviation (SD) and coefficient of variation (CoV) of force signals. OV significantly decreased force SD irrespective of contraction intensity, but the decrease in force CoV was significantly higher for low-intensity contraction. To the best of our knowledge, our findings are the first evidence that sinusoidal vibrotactile stimulation can enhance force steadiness in a motor task. Also, the significant improvement caused by OV during low-intensity contractions is probably due to the higher sensitivity of the motor system to the synaptic noise. These results add to the current knowledge on the effects of vibrotactile stimulation in motor control and have potential implications for the development of wearable haptic devices.

In this work the effects of a sinusoidal vibrotactile stimulation on force steadiness was investigated. Index finger sensorimotor tasks were performed in three levels of isometric contraction of the FDI muscle: 5, 10 and 15 %MVC. An optimal level of vibration significantly improved force steadiness, but the decrease in force CoV caused by vibration was more pronounced in contractions at 5 %MVC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Proske U, Gandevia SC (2012) The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 92:1651–1697. https://doi.org/10.1152/physrev.00048.2011

    Article  CAS  PubMed  Google Scholar 

  2. Prochazka A, Ellaway P (2012) Sensory systems in the control of movement. Compr Physiol 2:2615–2627. https://doi.org/10.1002/cphy.c100086

    Article  PubMed  Google Scholar 

  3. Samoudi G, Jivegard M, Mulavara AP, Bergquist F (2015) Effects of stochastic vestibular galvanic stimulation and LDOPA on balance and motor symptoms in patients with Parkinson’s disease. Brain Stimul 8:474–480. https://doi.org/10.1016/j.brs.2014.11.019

    Article  PubMed  Google Scholar 

  4. Mulavara AP, Fiedler MJ, Kofman IS, Wood SJ, Serrador JM, Peters B, Cohen HS, Reschke MF, Bloomberg JJ (2011) Improving balance function using vestibular stochastic resonance: optimizing stimulus characteristics. Exp Brain Res 210:303–312. https://doi.org/10.1007/s00221-011-2633-z

    Article  PubMed  Google Scholar 

  5. Priplata A, Niemi J, Salen M, Harry J, Lipsitz LA, Collins JJ (2002) Noise-enhanced human balance control. Phys Rev Lett 89:238101. https://doi.org/10.1103/PhysRevLett.89.238101

    Article  CAS  PubMed  Google Scholar 

  6. Priplata AA, Niemi JB, Harry JD, Lipsitz LA, Collins JJ (2003) Vibrating insoles and balance control in elderly people. Lancet 362:1123–1124. https://doi.org/10.1016/S0140-6736(03)14470-4

    Article  PubMed  Google Scholar 

  7. Priplata AA, Patritti BL, Niemi JB, Hughes R, Gravelle DC, Lipsitz LA, Veves A, Stein J, Bonato P, Collins JJ (2006) Noise-enhanced balance control in patients with diabetes and patients with stroke. Ann Neurol 59:4–12. https://doi.org/10.1002/ana.20670

    Article  PubMed  Google Scholar 

  8. Dettmer M, Pourmoghaddam A, Lee B-C, Layne CS (2015) Effects of aging and tactile stochastic resonance on postural performance and postural control in a sensory conflict task. Somatosens Mot Res 32:1–8. https://doi.org/10.3109/08990220.2015.1004045

    Article  Google Scholar 

  9. Magalhaes FH, Kohn AF (2011) Vibratory noise to the fingertip enhances balance improvement associated with light touch. Exp Brain Res 209:139–151. https://doi.org/10.1007/s00221-010-2529-3

    Article  PubMed  Google Scholar 

  10. Collins JJ, Imhoff TT, Grigg P (1996) Noise-enhanced tactile sensation. Nature 383:770–770. https://doi.org/10.1038/383770a0

    Article  CAS  PubMed  Google Scholar 

  11. Lakshminarayanan K, Lauer AW, Ramakrishnan V, Webster JG, Seo NJ (2015) Application of vibration to wrist and hand skin affects fingertip tactile sensation. Phys Rep 3:e12465. https://doi.org/10.14814/phy2.12465

    Article  Google Scholar 

  12. Mendez-Balbuena I, Manjarrez E, Schulte-Monting J, Huethe F, Tapia JA, Hepp-Reymond MC, Kristeva R (2012) Improved sensorimotor performance via stochastic resonance. J Neurosci 32:12612–12618. https://doi.org/10.1523/JNEUROSCI.0680-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Toledo DR, Barela JA, Kohn AF (2017) Improved proprioceptive function by application of subsensory electrical noise: effects of aging and task-demand. Neuroscience. 358:103–114. https://doi.org/10.1016/j.neuroscience.2017.06.045

    Article  CAS  PubMed  Google Scholar 

  14. Manjarrez E, Diez-Martı́nez O, Méndez I, Flores A (2002) Stochastic resonance in human electroencephalographic activity elicited by mechanical tactile stimuli. Neurosci Lett 324:213–216. https://doi.org/10.1016/S0304-3940(02)00212-4

    Article  CAS  PubMed  Google Scholar 

  15. Manjarrez E, Rojas-Piloni G, Mendez I, Flores A (2003) Stochastic resonance within the somatosensory system: effects of noise on evoked field potentials elicited by tactile stimuli. J Neurosci 23:1997–2001

    Article  CAS  PubMed  Google Scholar 

  16. Trenado C, Amtage F, Huethe F, Schulte-Mönting J, Mendez-Balbuena I, Baker SN, Baker M, Hepp-Reymond MC, Manjarrez E, Kristeva R (2014) Suppression of enhanced physiological tremor via stochastic noise: initial observations. PLoS One 9:e112782. https://doi.org/10.1371/journal.pone.0112782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Trenado C, Mikulić A, Manjarrez E, Mendez-Balbuena I, Schulte-Mönting J, Huethe F, Hepp-Reymond MC, Kristeva R (2014) Broad-band Gaussian noise is most effective in improving motor performance and is most pleasant. Front Hum Neurosci 8:22. https://doi.org/10.3389/fnhum.2014.00022

    Article  PubMed  PubMed Central  Google Scholar 

  18. McDonnell MD, Ward LM (2011) The benefits of noise in neural systems: bridging theory and experiment. Nat Rev Neurosci 12:415–426. https://doi.org/10.1038/nrn3061

    Article  CAS  PubMed  Google Scholar 

  19. Moss F (2004) Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol 115:267–281. https://doi.org/10.1016/j.clinph.2003.09.014

    Article  PubMed  Google Scholar 

  20. McDonnell MD, Abbott D (2009) What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput Biol 5:e1000348. https://doi.org/10.1371/journal.pcbi.1000348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Durand DM, Kawaguchi M, Mino H (2013) Reverse stochastic resonance in a hippocampal CA1 neuron model. In: 2013 35th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE, pp 5242–5245

  22. Iliopoulos F, Nierhaus T, Villringer A (2014) Electrical noise modulates perception of electrical pulses in humans: sensation enhancement via stochastic resonance. J Neurophysiol 111:1238–1248. https://doi.org/10.1152/jn.00392.2013

    Article  PubMed  Google Scholar 

  23. Slifkin AB, Newell KM (2000) Variability and noise in continuous force production. J Mot Behav 32:141–150. https://doi.org/10.1080/00222890009601366

    Article  CAS  PubMed  Google Scholar 

  24. Jones KE, Hamilton AF, Wolpert DM (2002) Sources of signal-dependent noise during isometric force production. J Neurophysiol 88:1533–1544

    Article  PubMed  Google Scholar 

  25. Watanabe RN, Magalhães FH, Elias LA, Chaud VM, Mello EM, Kohn AF (2013) Influences of premotoneuronal command statistics on the scaling of motor output variability during isometric plantar flexion. J Neurophysiol 110:2592–2606. https://doi.org/10.1152/jn.00073.2013

    Article  PubMed  Google Scholar 

  26. Dideriksen JL, Negro F, Enoka RM, Farina D (2012) Motor unit recruitment strategies and muscle properties determine the influence of synaptic noise on force steadiness. J Neurophysiol 107:3357–3369. https://doi.org/10.1152/jn.00938.2011

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kurita Y, Shinohara M, Ueda J (2013) Wearable sensorimotor enhancer for fingertip based on stochastic resonance effect. IEEE Trans Human-Machine Syst 43:333–337. https://doi.org/10.1109/TSMC.2013.2242886

    Article  Google Scholar 

  28. Germer CM, Moreira LS, Elias LA (2017) Enhancement of force steadiness induced by sinusoidal vibrotactile stimulation depends on contraction intensity. 47th Annu. Meet. Soc. Neurosci

  29. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 9:97–113. https://doi.org/10.1016/0028-3932(71)90067-4

    Article  CAS  PubMed  Google Scholar 

  30. Abraira VE, Ginty DD (2013) The sensory neurons of touch. Neuron 79:618–639. https://doi.org/10.1016/j.neuron.2013.07.051

    Article  CAS  PubMed  Google Scholar 

  31. Sato M (1961) Response of Pacinian corpuscles to sinusoidal vibration. J Physiol 159:391–409. https://doi.org/10.1113/jphysiol.1961.sp006817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Germer C, Moreira L, Elias LA (2018) Force control with vibrotactile stimulation. https://doi.org/10.6084/m9.figshare.7447907.v1

  33. Trenado C, Mendez-Balbuena I, Manjarrez E, Huethe F, Schulte-Mönting J, Feige B, Hepp-Reymond MC, Kristeva R (2014) Enhanced corticomuscular coherence by external stochastic noise. Front Hum Neurosci 8:1–10. https://doi.org/10.3389/fnhum.2014.00325

    Article  Google Scholar 

  34. Slifkin AB, Newell KM (1999) Noise, information transmission, and force variability. J Exp Psychol 25:837–851

    CAS  Google Scholar 

  35. Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci 88:2297–2301. https://doi.org/10.1073/pnas.88.6.2297

    Article  CAS  PubMed  Google Scholar 

  36. Lodha N, Christou EA (2017) Low-frequency oscillations and control of the motor output. Front Physiol 8:1–9. https://doi.org/10.3389/fphys.2017.00078

    Article  Google Scholar 

  37. Negro F, Holobar A, Farina D (2009) Fluctuations in isometric muscle force can be described by one linear projection of low-frequency components of motor unit discharge rates. J Physiol 587:5925–5938. https://doi.org/10.1113/jphysiol.2009.178509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Novak T, Newell KM (2017) Physiological tremor (8–12Hz component) in isometric force control. Neurosci Lett 641:87–93. https://doi.org/10.1016/j.neulet.2017.01.034

    Article  CAS  PubMed  Google Scholar 

  39. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd ed. Hillsdale: Lawrence Erlbaum. p 567

  40. Seo NJ, Kosmopoulos ML, Enders LR, Hur P (2014) Effect of remote sensory noise on hand function post stroke. Front Hum Neurosci 8:1–19. https://doi.org/10.3389/fnhum.2014.00934

    Article  Google Scholar 

  41. Freeman AW, Johnson KO (1982) Cutaneous mechanoreceptors in macaque monkey: temporal discharge patterns evoked by vibration, and a receptor model. J Physiol 323:21–41. https://doi.org/10.1113/jphysiol.1982.sp014059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baweja HS, Patel BK, Martinkewiz JD, Vu J, Christou EA (2009) Removal of visual feedback alters muscle activity and reduces force variability during constant isometric contractions. Exp Brain Res 197:35–47. https://doi.org/10.1007/s00221-009-1883-5

    Article  PubMed  PubMed Central  Google Scholar 

  43. Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394:780–784. https://doi.org/10.1038/29528

    Article  CAS  PubMed  Google Scholar 

  44. Keenan KG, Valero-Cuevas FJ (2007) Experimentally valid predictions of muscle force and EMG in models of motor-unit function are Most sensitive to neural properties. J Neurophysiol 98:1581–1590. https://doi.org/10.1152/jn.00577.2007

    Article  PubMed  Google Scholar 

  45. Calvin WH, Stevens CF (1967) Synaptic noise as a source of variability in the interval between action potentials. Science 155(80):842–844. https://doi.org/10.1126/science.155.3764.842

    Article  CAS  PubMed  Google Scholar 

  46. Moritz CT, Barry BK, Pascoe MA, Enoka RM (2005) Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle. J Neurophysiol 93:2449–2459. https://doi.org/10.1152/jn.01122.2004

    Article  PubMed  Google Scholar 

  47. Ofori E, Loucks TMJ, Sosnoff JJ (2012) Visuomotor and audiomotor processing in continuous force production of oral and manual effectors. J Mot Behav 44:87–96. https://doi.org/10.1080/00222895.2012.654523

    Article  PubMed  Google Scholar 

  48. Sosnoff JJ, Newell KM (2005) Intermittent visual information and the multiple time scales of visual motor control of continuous isometric force production. Percept Psychophys 67:335–344

    Article  PubMed  Google Scholar 

  49. Moon H, Kim C, Kwon M, Chen YT, Onushko T, Lodha N, Christou EA (2014) Force control is related to low-frequency oscillations in force and surface EMG. PLoS One 9:e109202. https://doi.org/10.1371/journal.pone.0109202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nagamori A, Laine CM, Valero-Cuevas FJ (2018) Cardinal features of involuntary force variability can arise from the closed-loop control of viscoelastic afferented muscles. PLoS Comput Biol 14:e1005884. https://doi.org/10.1371/journal.pcbi.1005884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Aimonetti JM, Vedel JP, Schmied A, Pagni S (2000) Mechanical cutaneous stimulation alters Ia presynaptic inhibition in human wrist extensor muscles: a single motor unit study. J Physiol 522:137–145. https://doi.org/10.1111/j.1469-7793.2000.0137m.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nakashima K, Rothwell JC, Day BL, Thompson PD, Marsden CD (1990) Cutaneous effects on presynaptic inhibition of flexor Ia afferents in the human forearm. J Physiol 426:369–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kurita Y, Sueda Y, Ishikawa T, Hattori M, Sawada H, Egi H, Ohdan H, Ueda J, Tsuji T (2016) Surgical grasping forceps with enhanced sensorimotor capability via the stochastic resonance effect. IEEE/ASME Trans Mechatronics 21:2624–2634. https://doi.org/10.1109/TMECH.2016.2591591

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Mr. Carlos Silva, Mr. Mauro Martinazo, Mr. Renato Moura, and Mr. Flavio Santos (Center for Biomedical Engineering, UNICAMP) for their technical support. C.M.G and L.S.M are recipients of PhD scholarships from Coordination for the Improvement of Higher Education Personnel (CAPES, Brazil).

Funding

L.A.E was funded by Research Grants from Teaching, Research, and Extension Support Fund of the University of Campinas (FAEPEX/UNICAMP, procs. nos. 1483/14 and 3289/16), CNPq (Brazilian NSF, proc. no. 312442/2017-3), and FAPESP (The Sao Paulo Research Foundation, proc. no. 2017/22191-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Abdala Elias.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Germer, C.M., Moreira, L.S. & Elias, L.A. Sinusoidal vibrotactile stimulation differentially improves force steadiness depending on contraction intensity. Med Biol Eng Comput 57, 1813–1822 (2019). https://doi.org/10.1007/s11517-019-01999-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-01999-8

Keywords

Navigation