Skip to main content
Log in

Evaluation of divided attention using different stimulation models in event-related potentials

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Divided attention is defined as focusing on different tasks at once, and this is described as one of the biggest problems of today’s society. Default examinations for understanding attention are questionnaires or physiological signals, like evoked potentials and electroencephalography. Physiological records were obtained using visual, auditory, and auditory-visual stimuli combinations with 48 participants—18-25-year-old university students—to find differences between sustained and divided attention. A Fourier-based filter was used to get a 0.01–30-Hz frequency band. Fractal dimensions, entropy values, power spectral densities, and Hjorth parameters from electroencephalography and P300 components from evoked potentials were calculated as features. To decrease the size of the feature set, some features, which yield less detail level for data, were eliminated. The visual and auditory stimuli in selective attention were compared with the divided attention state, and the best accuracy was found to be 88.89% on a support vector machine with linear kernel. As a result, it was seen that divided attention could be more difficult to determine from selective attention, but successful classification could be obtained with appropriate methods. Contrary to literature, the study deals with the infrastructure of attention types by working on a completely healthy and attention-high group.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gajre NS, Fernandez S, Balakrishna N, Vazir S (2008) Breakfast eating habit and its influence on attention-concentration, immediate memory and school achievement. Indian Pediatr 45:824–828

    CAS  PubMed  Google Scholar 

  2. Hu J, Wang X, Qin H (2016) Novel and efficient computation of Hilbert-Huang transform on surfaces. Comput Aided Geom Des 43:95–108. https://doi.org/10.1016/j.cagd.2016.02.011

    Article  Google Scholar 

  3. Kuniecki M, Pilarczyk J, Wichary S et al (2015) The color red attracts attention in an emotional context. An ERP study. Front Hum Neurosci 9:212. https://doi.org/10.3389/fnhum.2015.00212

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kutas M, Federmeier KD (2014) Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annu Rev Psychol 62:621–647. https://doi.org/10.1146/annurev.psych.093008.131123.Thirty

    Article  Google Scholar 

  5. Gordon R, Ciorciari J, van Laer T (2018) Using EEG to examine the role of attention, working memory, emotion, and imagination in narrative transportation. Eur J Mark 52:92–117. https://doi.org/10.1108/EJM-12-2016-0881

    Article  Google Scholar 

  6. Vedel-Larsen E, Fuglø J, Channir F, Thomsen CE, Sørensen HBD (2010) A comparative study between a simplified Kalman filter and sliding window averaging for single trial dynamical estimation of event-related potentials. Comput Methods Prog Biomed 99:252–260. https://doi.org/10.1016/j.cmpb.2009.12.006

    Article  Google Scholar 

  7. Güven A, Batbat T (2018) Evaluation of filters over different stimulation models in evoked potentials. Biocybern Biomed Eng 39:339–349. https://doi.org/10.1016/j.bbe.2018.08.007

    Article  Google Scholar 

  8. Orekhova EV, Stroganova TA (2014) Arousal and attention re-orienting in autism spectrum disorders: evidence from auditory event-related potentials. Front Hum Neurosci 8:1–17. https://doi.org/10.3389/fnhum.2014.00034

    Article  Google Scholar 

  9. McCane LM, Heckman SM, McFarland DJ et al (2015) P300-based brain-computer interface (BCI) event-related potentials (ERPs): people with amyotrophic lateral sclerosis (ALS) vs. age-matched controls. Clin Neurophysiol 126:2124–2131. https://doi.org/10.1016/j.clinph.2015.01.013

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dinteren R, Arns M, Jongsma MLA, Kessels RPC (2014) P300 development across the lifespan: a systematic review and meta-analysis. PLoS One 9. https://doi.org/10.1371/journal.pone.0087347

  11. Kayser J, Tenke CE, Kroppmann CJ, Alschuler DM, Fekri S, Ben-David S, Corcoran CM, Bruder GE (2014) Auditory event-related potentials and alpha oscillations in the psychosis prodrome: neuronal generator patterns during a novelty oddball task. Int J Psychophysiol 91:104–120. https://doi.org/10.1016/j.ijpsycho.2013.12.003

    Article  PubMed  Google Scholar 

  12. Sokka L, Huotilainen M, Leinikka M, Korpela J, Henelius A, Alain C, Müller K, Pakarinen S (2014) Alterations in attention capture to auditory emotional stimuli in job burnout: an event-related potential study. Int J Psychophysiol 94:427–436. https://doi.org/10.1016/j.ijpsycho.2014.11.001

    Article  PubMed  Google Scholar 

  13. Hövel H, Partanen E, Huotilainen M, Lindgren M, Rosén I, Fellman V (2014) Auditory event-related potentials at preschool age in children born very preterm. Clin Neurophysiol 125:449–456. https://doi.org/10.1016/j.clinph.2013.07.026

    Article  PubMed  Google Scholar 

  14. Putkinen V, Tervaniemi M, Saarikivi K, Ojala P, Huotilainen M (2014) Enhanced development of auditory change detection in musically trained school-aged children: a longitudinal event-related potential study. Dev Sci 17:282–297. https://doi.org/10.1111/desc.12109

    Article  PubMed  Google Scholar 

  15. Learmonth G, Benwell CSYY, Thut G, Harvey M (2017) Age-related reduction of hemispheric lateralisation for spatial attention: an EEG study. Neuroimage 153:139–151. https://doi.org/10.1016/j.neuroimage.2017.03.050

    Article  PubMed  Google Scholar 

  16. Chiang H-S, Hsiao K-L, Liu L-C (2017) EEG-based detection model for evaluating and improving learning attention. J Med Biol Eng 38:847–856. https://doi.org/10.1007/s40846-017-0344-z

    Article  Google Scholar 

  17. Coelli S, Barbieri R, Reni G, Zucca C, Bianchi AM (2018) EEG indices correlate with sustained attention performance in patients affected by diffuse axonal injury. Med Biol Eng Comput 56:991–1001. https://doi.org/10.1007/s11517-017-1744-5

    Article  PubMed  Google Scholar 

  18. Ho M-C, Chen T-C, Huang C-F, Yu CH, Chen JM, Huang RY, Ho HC, Liu CJ (2014) Detect AD patients by using EEG coherence analysis. J Med Eng 2014:1–5. https://doi.org/10.1155/2014/236734

    Article  Google Scholar 

  19. Kortelainen J, Väyrynen E, Huuskonen U, Laurila J (2016) Using Hilbert-Huang transform to assess EEG slow wave activity during anesthesia in post-cardiac arrest patients, pp 1850–1853

  20. Oweis RJ, Abdulhay EW (2011) Seizure classification in EEG signals utilizing Hilbert-Huang transform. Biomed Eng Online 10:38. https://doi.org/10.1186/1475-925X-10-38

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mariani S, Borges AFT, Henriques T, et al (2016) Analysis of the sleep EEG in the complexity domain, pp 6429–6432

  22. Amin HU, Malik AS, Ahmad RF, Badruddin N, Kamel N, Hussain M, Chooi WT (2015) Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Australas Phys Eng Sci Med 38:139–149. https://doi.org/10.1007/s13246-015-0333-x

    Article  PubMed  Google Scholar 

  23. Prakash A, Roy V (2016) An automatic detection of sleep using different statistical parameters of single channel EEG signals. Int J Signal Process Image Process Pattern Recognit 9:335–344. https://doi.org/10.14257/ijsip.2016.9.10.32

    Article  Google Scholar 

  24. Batbat T, Güven A, Dolu N (2018) Evaluation of the effects of stimulus types over attention based on Hjorth parameters with electroencephalography. In: European Conference On Science, Art & Culture (ECSAC’18). Antalya, p 138

  25. Pozharliev R, Verbeke WJMIMI, Van Strien JW, Bagozzi RP (2015) Merely being with you increases my attention to luxury products: using EEG to understand consumers’ emotional experience with luxury branded products. J Mark Res 52:546–558. https://doi.org/10.1509/jmr.13.0560

    Article  Google Scholar 

  26. Langeslag SJEE, Olivier JR, Köhlen ME et al (2015) Increased attention and memory for beloved-related information during infatuation: behavioral and electrophysiological data. Soc Cogn Affect Neurosci 10:136–144. https://doi.org/10.1093/scan/nsu034

    Article  PubMed  Google Scholar 

  27. Ikeda K (2015) Binaural interaction in human auditory brainstem response compared for tone-pips and rectangular clicks under conditions of auditory and visual attention. Hear Res 325:27–34. https://doi.org/10.1016/j.heares.2015.02.010

    Article  PubMed  Google Scholar 

  28. Escoffier N, Herrmann CS, Schirmer A (2015) Auditory rhythms entrain visual processes in the human brain: evidence from evoked oscillations and event-related potentials. Neuroimage 111:267–276. https://doi.org/10.1016/j.neuroimage.2015.02.024

    Article  PubMed  Google Scholar 

  29. Andersson L, Sandberg P, Olofsson JK, Nordin S (2018) Effects of task demands on olfactory, auditory, and visual event-related potentials suggest similar top-down modulation across senses. Chem Senses 43:129–134. https://doi.org/10.1093/chemse/bjx082

    Article  PubMed  Google Scholar 

  30. Riaz F, Hassan A, Rehman S, et al (2015) EMD based temporal and spectral features for the classification of EEG signals using supervised learning. IEEE Trans Neural Syst Rehabil Eng PP:1. https://doi.org/10.1109/TNSRE.2015.2441835

  31. Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B (2007) A review of classification algorithms for EEG-based brain–computer interfaces. J Neural Eng 4:R1–R13. https://doi.org/10.1088/1741-2560/4/2/R01

    Article  CAS  PubMed  Google Scholar 

  32. Bonnel A-M, Haftser ER (1998) Divided attention between simultaneous auditory and visual signals. Percept Psychophys 60:179–190. https://doi.org/10.3758/BF03206027

    Article  CAS  PubMed  Google Scholar 

  33. Falkenstein M, Hohnsbein J, Hoormann J, Blanke L (1991) Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalogr Clin Neurophysiol 78:447–455

    Article  CAS  PubMed  Google Scholar 

  34. Sanger KL, Dorjee D (2015) Mindfulness training for adolescents: a neurodevelopmental perspective on investigating modifications in attention and emotion regulation using event-related brain potentials. Cogn Affect Behav Neurosci 15:696–711. https://doi.org/10.3758/s13415-015-0354-7

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sun JCY, Yeh KPC (2017) The effects of attention monitoring with EEG biofeedback on university students’ attention and self-efficacy: the case of anti-phishing instructional materials. Comput Educ 106:73–82. https://doi.org/10.1016/j.compedu.2016.12.003

    Article  Google Scholar 

  36. Hong X, Sun J, Bengson JJ, Mangun GR, Tong S (2015) Normal aging selectively diminishes alpha lateralization in visual spatial attention. Neuroimage 106:353–363. https://doi.org/10.1016/j.neuroimage.2014.11.019

    Article  PubMed  Google Scholar 

  37. Guven A, Batbat T, Dolu N, Demir M (2017) Exploration of gender differences on attention levels with cancellation tests. In: 2017 medical technologies National Conference, TIPTEKNO 2017, pp 1–3

  38. Burkhouse KL, Woody ML, Owens M, Gibb BE (2015) Influence of worry on sustained attention to emotional stimuli: evidence from the late positive potential. Neurosci Lett 588:57–61. https://doi.org/10.1016/j.neulet.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  39. Sanei S, Chambers JA (2013) EEG signal processing. ISBN 978-0-470-02581-9

  40. Ko L-W, Komarov O, Hairston WD, Jung TP, Lin CT (2017) Sustained attention in real classroom settings: an EEG study. Front Hum Neurosci 11:1–10. https://doi.org/10.3389/fnhum.2017.00388

    Article  Google Scholar 

  41. Wang YK, Jung TP, Lin CT (2015) EEG-based attention tracking during distracted driving. IEEE Trans Neural Syst Rehabil Eng 23:1085–1094. https://doi.org/10.1109/TNSRE.2015.2415520

    Article  PubMed  Google Scholar 

  42. Esteller R, Vachtsevanos G, Echauz J, Litt B (2001) A comparison of waveform fractal dimension algorithms. IEEE Trans Circuits Syst I Fundam Theory Appl 48:177–183

    Article  Google Scholar 

  43. Jenke R, Peer A, Buss M (2014) Feature extraction and selection for emotion recognition from EEG. IEEE Trans Affect Comput 5:327–339. https://doi.org/10.1109/TAFFC.2014.2339834

    Article  Google Scholar 

  44. Alkan A, Kiymik MK (2006) Comparison of AR and Welch methods in epileptic seizure detection. J Med Syst 30:413–419. https://doi.org/10.1007/s10916-005-9001-0

    Article  PubMed  Google Scholar 

  45. Güven A, Altınkaynak M, Dolu N, Ünlühızarcı K (2015) Advanced analysis of auditory evoked potentials in hyperthyroid patients: the effect of filtering. J Med Syst 39:13. https://doi.org/10.1007/s10916-014-0184-0

    Article  PubMed  Google Scholar 

  46. Sokhadze EM, Casanova MF, Casanova EL, Lamina E, Kelly DP, Khachidze I (2017) Event-related potentials (ERP) in cognitive neuroscience research and applications. NeuroRegulation 4:14–27. https://doi.org/10.15540/nr.4.1.14

    Article  Google Scholar 

  47. Silvoni S, Konicar L, Prats-Sedano MA, Garcia-Cossio E, Genna C, Volpato C, Cavinato M, Paggiaro A, Veser S, de Massari D, Birbaumer N (2016) Tactile event-related potentials in amyotrophic lateral sclerosis (ALS): implications for brain-computer interface. Clin Neurophysiol 127:936–945. https://doi.org/10.1016/j.clinph.2015.06.029

    Article  CAS  PubMed  Google Scholar 

  48. Howe AS, Bani-Fatemi A, De Luca V (2014) The clinical utility of the auditory P300 latency subcomponent event-related potential in preclinical diagnosis of patients with mild cognitive impairment and Alzheimer’s disease. Brain Cogn 86:64–74. https://doi.org/10.1016/j.bandc.2014.01.015

    Article  PubMed  Google Scholar 

  49. Aliakbaryhosseinabadi S, Kamavuako EN, Jiang N, Farina D, Mrachacz-Kersting N (2017) Classification of EEG signals to identify variations in attention during motor task execution. J Neurosci Methods 284:27–34. https://doi.org/10.1016/j.jneumeth.2017.04.008

    Article  PubMed  Google Scholar 

  50. Hassan AR, Bhuiyan MIH (2016) A decision support system for automatic sleep staging from EEG signals using tunable Q-factor wavelet transform and spectral features. J Neurosci Methods 271:107–118. https://doi.org/10.1016/j.jneumeth.2016.07.012

    Article  PubMed  Google Scholar 

  51. Abhishekh HA, Thirthalli J, Manjegowda A, Phutane VH, Muralidharan K, Gangadhar BN (2013) Ictal EEG fractal dimension in ECT predicts outcome at 2 weeks in schizophrenia. Psychiatry Res 209:155–159. https://doi.org/10.1016/j.psychres.2012.11.029

    Article  PubMed  Google Scholar 

  52. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software. SIGKDD Explor Newsl 11:10. https://doi.org/10.1145/1656274.1656278

  53. Wang W, Viswanathan S, Lee T, Grafton ST (2016) Coupling between theta oscillations and cognitive control network during cross-modal visual and auditory attention: supramodal vs modality-specific mechanisms. PLoS One 11:1–16. https://doi.org/10.1371/journal.pone.0158465

    Article  CAS  Google Scholar 

  54. Kida T, Nishihira Y, Wasaka T, Nakata H, Sakamoto M (2004) Passive enhancement of the somatosensory P100 and N140 in an active attention task using deviant alone condition. Clin Neurophysiol 115:871–879. https://doi.org/10.1016/j.clinph.2003.11.037

    Article  PubMed  Google Scholar 

  55. Feng W, Störmer VS, Martinez A, McDonald JJ, Hillyard SA (2017) Involuntary orienting of attention to a sound desynchronizes the occipital alpha rhythm and improves visual perception. Neuroimage 150:318–328. https://doi.org/10.1016/j.neuroimage.2017.02.033

    Article  PubMed  Google Scholar 

  56. Sarraf S (2017) EEG-based movement imagery classification using machine learning techniques and Welch’s power spectral density estimation. Am Sci Res J Eng Technol Sci 33:124–145

    Google Scholar 

Download references

Funding

This study was funded by The Scientific and Technological Research Council of Turkey (TUBITAK) (grant no. 114E440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turgay Batbat.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batbat, T., Güven, A. & Dolu, N. Evaluation of divided attention using different stimulation models in event-related potentials. Med Biol Eng Comput 57, 2069–2079 (2019). https://doi.org/10.1007/s11517-019-02013-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-02013-x

Keywords

Navigation