Skip to main content

Advertisement

Log in

A comparison of subject-dependent and subject-independent channel selection strategies for single-trial P300 brain computer interfaces

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Brain computer interfaces (BCI) represent an alternative for patients whose cognitive functions are preserved, but are unable to communicate via conventional means. A commonly used BCI paradigm is based on the detection of event-related potentials, particularly the P300, immersed in the electroencephalogram (EEG). In order to transfer laboratory-tested BCIs into systems that can be used by at homes, it is relevant to investigate if it is possible to select a limited set of EEG channels that work for most subjects and across different sessions without a significant decrease in performance. In this work, two strategies for channel selection for a single-trial P300 brain computer interface were evaluated and compared. The first strategy was tailored specifically for each subject, whereas the second strategy aimed at finding a subject-independent set of channels. In both strategies, genetic algorithms (GAs) and recursive feature elimination algorithms were used. The classification stage was performed using a linear discriminant. A dataset of EEG recordings from 18 healthy subjects was used test the proposed configurations. Performance indexes were calculated to evaluate the system. Results showed that a fixed subset of four subject-independent EEG channels selected using GA provided the best compromise between BCI setup and single-trial system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland D, Peckham PH, Schalk G, Donchin E, Quatrano LA, Robinson CJ, Vaughan TM (2000) Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng 8:164–173. https://doi.org/10.1109/TRE.2000.847807

    Article  CAS  PubMed  Google Scholar 

  2. Birbaumer N, Cohen LG (2007) Brain-computer interfaces: communication and restoration of movement in paralysis. J Physiol 579:621–636. https://doi.org/10.1113/jphysiol.2006.125633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vaughan TM, Heetderks WJ, Trejo LJ, Rymer WZ, Weinrich M, Moore MM, Kübler A, Dobkin BH, Birbaumer N, Donchin E, Wolpaw EW, Wolpaw JR (2003) Brain-computer interface technology: a review of the Second International Meeting. IEEE Trans Neural Syst Rehabil Eng 11:94–109

    Article  Google Scholar 

  4. Gentiletti GG, Tabernig CB, Acevedo RC (2008) Interfaces cerebro computadora: Definición, tipos y estado actual. IFMBE Proc 18:1117–1121. https://doi.org/10.1007/978-3-540-74471-9_259

    Article  Google Scholar 

  5. Chaudhary U, Birbaumer N, Ramos-Murguialday A (2016) Brain-computer interfaces for communication and rehabilitation. Nat Rev Neurol 12:513–525. https://doi.org/10.1038/nrneurol.2016.113

    Article  PubMed  Google Scholar 

  6. Acevedo R, Atum Y, Gareis I, Biurrun Manresa J, Medina Bañuelos V, Rufiner L (2018) A comparison of feature extraction strategies using wavelet dictionaries and feature selection methods for single trial P300-based BCI. Med Biol Eng Comput 57:589–600. https://doi.org/10.1007/s11517-018-1898-9

    Article  PubMed  Google Scholar 

  7. Abiri R, Borhani S, Sellers EW, et al (2019) A comprehensive review of EEG-based brain-computer interface paradigms. J Neural Eng 16. https://doi.org/10.1088/1741-2552/aaf12e

    Article  Google Scholar 

  8. Arvaneh M, Guan C, Ang KK, Quek C (2011) Optimizing the channel selection and classification accuracy in EEG-Based BCI. IEEE Trans Biomed Eng 58:1865–1873. https://doi.org/10.1109/TBME.2011.2131142

    Article  PubMed  Google Scholar 

  9. Cecotti H, Rivet B, Congedo M et al (2011) A robust sensor-selection method for P300 brain-computer interfaces. J Neural Eng 8:016001

    Article  CAS  Google Scholar 

  10. Shih EI, Shoeb AH, Guttag JV (2009) Sensor selection for energy-efficient ambulatory medical monitoring. Proc 7th Int Conf Mob Syst Appl Serv - Mobisys ’09 347. https://doi.org/10.1145/1555816.1555851

  11. Xu M, Qi H, Ma L, Sun C, Zhang L, Wan B, Yin T, Ming D (2013) Channel selection based on phase measurement in P300-based brain-computer interface. PLoS One 8:e60608. https://doi.org/10.1371/journal.pone.0060608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Feess D, Krell MM, Metzen JH (2013) Comparison of sensor selection mechanisms for an ERP-Based brain-computer interface. PLoS One 8. https://doi.org/10.1371/journal.pone.0067543

    Article  CAS  Google Scholar 

  13. Colwell KA, Ryan DB, Throckmorton CS, Sellers EW, Collins LM (2014) Channel selection methods for the P300 Speller. J Neurosci Methods 232:6–15. https://doi.org/10.1016/j.jneumeth.2014.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vaughan TM, McFarland DJ, Schalk G, Sarnacki WA, Krusienski DJ, Sellers EW, Wolpaw JR (2006) The wadsworth BCI research and development program. Neural Syst Rehabil Eng IEEE Trans 14:229–233

    Article  Google Scholar 

  15. Li Y, Wang L-Q, Hu Y (2009) Localizing P300 generators in high-density event- related potential with fMRI. Med Sci Monit 15:47–53

    CAS  Google Scholar 

  16. Hoffmann U, Vesin JM, Ebrahimi T, Diserens K (2008) An efficient P300-based brain-computer interface for disabled subjects. J Neurosci Methods 167:115–125. https://doi.org/10.1016/j.jneumeth.2007.03.005

    Article  PubMed  Google Scholar 

  17. Lal TN, Schroder M, Hinterberger T et al (2004) Support vector channel selection in BCI. IEEE Trans Biomed Eng 51:1003–1010. https://doi.org/10.1109/TBME.2004.827827

    Article  PubMed  Google Scholar 

  18. Krusienski DJ, Sellers EW, McFarland DJ, Vaughan TM, Wolpaw JR (2008) Toward enhanced P300 speller performance. J Neurosci Methods 167:15–21. https://doi.org/10.1016/j.jneumeth.2007.07.017

    Article  CAS  PubMed  Google Scholar 

  19. Jin J, Allison BZ, Brunner C, Wang B, Wang X, Zhang J, Neuper C, Pfurtscheller G (2010) P300 Chinese input system based on Bayesian LDA. Biomed Tech 55:5–18. https://doi.org/10.1515/BMT.2010.003

    Article  Google Scholar 

  20. Rivet B, Cecotti H, Maby E, Mattout J (2012) Impact of spatial filters during sensor selection in a visual P300 brain-computer interface. Brain Topogr 25:55–63. https://doi.org/10.1007/s10548-011-0193-y

    Article  CAS  PubMed  Google Scholar 

  21. Yu T, Yu Z, Gu Z, Li Y (2015) Grouped automatic relevance determination and its application in channel selection for P300 BCIs. IEEE Trans Neural Syst Rehabil Eng 23:1068–1077. https://doi.org/10.1109/TNSRE.2015.2413943

    Article  PubMed  Google Scholar 

  22. Martínez-Cagigal V, Hornero R (2017) A binary bees algorithm for P300-based brain-computer interfaces channel selection. In: Advances in Computational Intelligence. pp 453–463

    Chapter  Google Scholar 

  23. Perseh B, Sharafat AR (2012) An EFficient P300-based BCI using wavelet features and IBPSO-based channel selection. J Med Signals Sens 2:128–143

    Article  Google Scholar 

  24. Liu Y, Zhou Z, Hu D (2011) Gaze independent brain-computer speller with covert visual search tasks. Clin Neurophysiol 122:1127–1136. https://doi.org/10.1016/j.clinph.2010.10.049

    Article  PubMed  Google Scholar 

  25. Ledesma-Ramírez C, Bojorges-Valdéz E, Yáñez-Suárez O, et al (2010) An open-access P300 Speller Database. In: Fourth International Brain-Computer Interface Meeting. pp 3–4

  26. Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–523. https://doi.org/10.1016/0013-4694(88)90149-6

    Article  CAS  PubMed  Google Scholar 

  27. Kee CY, Kuppan Chetty RM, Khoo BH, Ponnambalam SG (2012) Genetic algorithm and Bayesian linear discriminant analysis based channel selection method for P300 BCI. In: Communications in Computer and Information Science. pp 226–235

    Google Scholar 

  28. Kee C-Y, Ponnambalam SG, Loo C-K (2015) Multi-objective genetic algorithm as channel selection method for P300 and motor imagery data set. Neurocomputing 161:120–131. https://doi.org/10.1016/j.neucom.2015.02.057

    Article  Google Scholar 

  29. Hasan IH, Ramli AR, Ahmad SA (2014) Utilization of genetic algorithm for optimal EEG channel selection in brain-computer interface application. 2014 4th Int Conf Artif Intell with Appl Eng Technol 97–102. https://doi.org/10.1109/ICAIET.2014.25

  30. Yang J, Singh H, Hines EL, Schlaghecken F, Iliescu DD, Leeson MS, Stocks NG (2012) Channel selection and classification of electroencephalogram signals: An artificial neural network and genetic algorithm-based approach. Artif Intell Med 55:117–126. https://doi.org/10.1016/j.artmed.2012.02.001

    Article  PubMed  Google Scholar 

  31. Wei Q, Lu Z, Chen K, Ma Y (2010) Channel selection for optimizing feature extraction in an electrocorticogram-based brain-computer interface. J Clin Neurophysiol 27:321–327. https://doi.org/10.1097/WNP.0b013e3181f52f2d

    Article  PubMed  Google Scholar 

  32. Atum YV, Biurrun Manresa JA, Rufiner L, Acevedo RC (2015) Genetic feature selection for a P300 brain computer interface. In: IFMBE Proceedings

  33. Guyon I, Elisseeff A (2006) An introduction to feature extraction. Springer, Berlin Heidelberg

    Book  Google Scholar 

  34. Michie ED, Spiegelhalter DJ, Taylor CC (1994) Machine learning , neural and statistical classification. Technometrics 37:459. https://doi.org/10.2307/1269742

    Article  Google Scholar 

  35. Van Dijck G, Van Hulle MM, Wevers M (2004) Genetic algorithm for feature subset selection with exploitation of feature correlations from continuous wavelet transform: a real-case application. Int Conf Comput Intell 1:34–38

    Google Scholar 

  36. Atum Y, Gareis I, Gentiletti G, et al (2010) Genetic feature selection to optimally detect P300 in Brain Computer Interfaces. 2010 Annu Int Conf IEEE Eng Med Biol Soc EMBC’10 3289–3292. https://doi.org/10.1109/IEMBS.2010.5627254

  37. Pacheco M, Atum Y, Acevedo R, Rufiner L (2016) Evaluation of different parents selection methods in a genetic algorithm wrapper for P300 BCI. In: XXV Brazilian Congress of Biomedical Engineering (CBEB 2016). pp 1433–1436

  38. Duda RO, Hart PE, Stork DG (2001) Pattern Classification. John Wiley, New York Sect 680

    Google Scholar 

  39. Webb AR, Copsey KD (2011) Statistical Pattern Recognition. John Wiley & Sons, Ltd, Chichester

    Book  Google Scholar 

  40. Elizondo D (2006) The linear separability problem: Some testing methods. IEEE Trans Neural Netw 17:330–344. https://doi.org/10.1109/TNN.2005.860871

    Article  CAS  PubMed  Google Scholar 

  41. Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F (2018) A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng 15:031005. https://doi.org/10.1088/1741-2552/aab2f2

    Article  CAS  PubMed  Google Scholar 

  42. Gonzalez A, Nambu I, Hokari H, et al (2013) Towards the classification of single-trial event-related potentials using adapted wavelets and particle swarm optimization. Proc - 2013 IEEE Int Conf Syst Man, Cybern SMC 2013, pp 3089–3094. https://doi.org/10.1109/SMC.2013.527

  43. Shahriari Y, Erfanian A (2011) A mutual information based channel selection scheme for P300-based brain computer interface. 5th Int IEEE/EMBS Conf Neural Eng 434–437. https://doi.org/10.1109/NER.2011.5910579

  44. Khan OI, Farooq F, Akram F, Choi MT, Han SM, Kim TS (2012) Robust extraction of P300 using constrained ICA for BCI applications. Med Biol Eng Comput 50:231–241. https://doi.org/10.1007/s11517-012-0861-4

    Article  PubMed  Google Scholar 

  45. Serby H, Yom-Tov E, Inbar GF (2005) An improved P300-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 13:89–98. https://doi.org/10.1109/TNSRE.2004.841878

    Article  PubMed  Google Scholar 

  46. Brunner P, Joshi S, Briskin S et al (2010) Does the “P300” speller depend on eye gaze? J Neural Eng 7. https://doi.org/10.1088/1741-2560/7/5/056013

    Article  CAS  Google Scholar 

  47. Nobre AC, Sebestyen GN, Miniussi C (2000) The dynamics of shifting visuospatial attention revealed by event-related potentials. Neuropsychologia 38:964–974. https://doi.org/10.1016/S0028-3932(00)00015-4

    Article  CAS  PubMed  Google Scholar 

  48. Thompson KG (2005) Neuronal basis of covert spatial attention in the frontal eye field. J Neurosci 25:9479–9487. https://doi.org/10.1523/JNEUROSCI.0741-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Treder MS, Blankertz B (2010) (C)overt attention and visual speller design in an ERP-based brain-computer interface. Behav Brain Funct 6:1–13. https://doi.org/10.1186/1744-9081-6-28

    Article  Google Scholar 

  50. Vo K, Pham T, Nguyen DN, Kha HH, Dutkiewicz E (2018) Subject-independent ERP-based brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 26:719–728. https://doi.org/10.1109/TNSRE.2018.2810332

    Article  PubMed  Google Scholar 

  51. Peterson V, Rufiner HL, Spies RD (2017) Generalized sparse discriminant analysis for event-related potential classification. Biomed Signal Process Control 35:70–78. https://doi.org/10.1016/j.bspc.2017.03.001

    Article  Google Scholar 

Download references

Funding sources

This work was financially supported by the National University of Entre Ríos (UNER), PID No. 6163.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanina Atum.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atum, Y., Pacheco, M., Acevedo, R. et al. A comparison of subject-dependent and subject-independent channel selection strategies for single-trial P300 brain computer interfaces. Med Biol Eng Comput 57, 2705–2715 (2019). https://doi.org/10.1007/s11517-019-02065-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-02065-z

Keywords

Navigation