Skip to main content

Advertisement

Log in

Motion correction and noise removing in lung diffusion-weighted MRI using low-rank decomposition

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Lung diffusion-weighted magnetic resonance imaging (DWI) has shown a promising value in lung lesion detection, diagnosis, differentiation, and staging. However, the respiratory and cardiac motion, blood flow, and lung hysteresis may contribute to the blurring, resulting in unclear lung images. The image blurring could adversely affect diagnosis performance. The purpose of this study is to reduce the DWI blurring and assess its positive effect on diagnosis. The retrospective study includes 71 patients. In this paper, a motion correction and noise removal method using low-rank decomposition is proposed, which can reduce the DWI blurring by exploit the spatiotemporal continuity sequences. The deblurring performances are evaluated by qualitative and quantitative assessment, and the performance of diagnosis of lung cancer is measured by area under curve (AUC). In the view of the qualitative assessment, the deformation of the lung mass is reduced, and the blurring of the lung tumor edge is alleviated. Noise in the apparent diffusion coefficient (ADC) map is greatly reduced. For quantitative assessment, mutual information (MI) and Pearson correlation coefficient (Pearson-Coff) are 1.30 and 0.82 before the decomposition and 1.40 and 0.85 after the decomposition. Both the difference in MI and Pearson-Coff are statistically significant (p < 0.05). For the positive effect of deblurring on diagnosis of lung cancer, the AUC was improved from 0.731 to 0.841 using three-fold cross validation. We conclude that the low-rank matrix decomposition method is promising in reducing the errors in DWI lung images caused by noise and artifacts and improving diagnostics. Further investigations are warranted to understand the full utilities of the low-rank decomposition on lung DWI images.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

DWI:

Diffusion-weighted imaging

ADC:

Apparent diffusion coefficient

T2WI:

T1-weighted imaging

T2WI:

T2-weighted imaging

CTP:

Computed tomography perfusion

PET:

Positron emission computed tomography

MI:

Mutual information

Pearson-Coff:

Pearson correlation coefficient

ROI:

Region of interest

ROC:

Receiver operating characteristic

AUC:

Area under curve

References

  1. Huber RM (2006) Lung cancer. Internist (Berl) 47:611–620; quiz 621. https://doi.org/10.1007/s00108-006-1581-3

    Article  CAS  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34. https://doi.org/10.3322/caac.21551

    Article  PubMed  Google Scholar 

  3. Cakir C, Genchellac H, Temizoz O, Polat A, Sengul E, Duygulu G (2015) Diffusion weighted magnetic resonance imaging for the characterization of solitary pulmonary lesions. Balkan Medical Journal 32:403–409. https://doi.org/10.5152/balkanmedj.2015.15663

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li B, Li Q, Chen C, Guan Y, Liu S (2014) A systematic review and meta-analysis of the accuracy of diffusion-weighted MRI in the detection of malignant pulmonary nodules and masses. Acad Radiol 21:21–29. https://doi.org/10.1016/j.acra.2013.09.019

    Article  PubMed  Google Scholar 

  5. Mori T, Nomori H, Ikeda K, Kawanaka K, Shiraishi S, Katahira K, Yamashita Y (2008) Diffusion-weighted magnetic resonance imaging for diagnosing malignant pulmonary nodules/masses: comparison with positron emission tomography. Journal of Thoracic Oncology 3:358–364. https://doi.org/10.1097/JTO.0b013e318168d9ed

    Article  PubMed  Google Scholar 

  6. Wu LM, Xu JR, Hua J, Gu HY, Chen J, Haacke EM, Hu J (2013) Can diffusion-weighted imaging be used as a reliable sequence in the detection of malignant pulmonary nodules and masses? Magn Reson Imaging 31:235–246. https://doi.org/10.1016/j.mri.2012.07.009

    Article  PubMed  Google Scholar 

  7. Tsuchiya N, Doai M, Usuda K, Uramoto H, Tonami H (2017) Non-small cell lung cancer: whole-lesion histogram analysis of the apparent diffusion coefficient for assessment of tumor grade, lymphovascular invasion and pleural invasion. PLoS One 12:e0172433. https://doi.org/10.1371/journal.pone.0172433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cai RF, Cui L, Yin JB, Jiang JQ, Liu J (2018) Value of LSR and ADCs in differential diagnosis of hilar and mediastinal lymph nodes in lung cancer. Zhonghua Yi Xue Za Zhi 98:3009–3013. https://doi.org/10.3760/cma.j.issn.0376-2491.2018.37.012

    Article  CAS  PubMed  Google Scholar 

  9. Wan Q, Deng YS, Lei Q, Bao YY, Wang YZ, Zhou JX, Zou Q, Li XC (2019) Differentiating between malignant and benign solid solitary pulmonary lesions: are intravoxel incoherent motion and diffusion kurtosis imaging superior to conventional diffusion-weighted imaging? Eur Radiol 29:1607–1615. https://doi.org/10.1007/s00330-018-5714-6

    Article  PubMed  Google Scholar 

  10. Zhou SC, Wang YJ, Ai T, Huang L, Zhu TT, Zhu WZ, Xia LM (2019) Diagnosis of solitary pulmonary lesions with intravoxel incoherent motion diffusion-weighted MRI and semi-quantitative dynamic contrast-enhanced MRI. Clinical Radiology 74:409 e407–409 e416. https://doi.org/10.1016/j.crad.2018.12.022

    Article  Google Scholar 

  11. Guan HX, Pan YY, Wang YJ, Tang DZ, Zhou SC, Xia LM (2018) Comparison of various parameters of DWI in distinguishing solitary pulmonary nodules. Current Medical Science 38:920–924. https://doi.org/10.1007/s11596-018-1963-5

    Article  PubMed  Google Scholar 

  12. Gou S, Wang Y, Wu J, Lee P, Sheng K (2015) Lung dynamic MRI deblurring using low-rank decomposition and dictionary learning. Med Phys 42:1917–1925. https://doi.org/10.1118/1.4915543

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hao L, Huang Y, Gao Y, Chen X, Wang P (2017) Nonrigid registration of prostate diffusion-weighted MRI. Journal of Healthcare Engineering 2017:9296354–9296312. https://doi.org/10.1155/2017/9296354

    Article  PubMed  PubMed Central  Google Scholar 

  14. Marchesseau S, Totman JJ, Fadil H, Leek FAA, Chaal J, Richards M, Chan M, Reilhac A (2019) Cardiac motion and spillover correction for quantitative PET imaging using dynamic MRI. Med Phys 46:726–737. https://doi.org/10.1002/mp.13345

    Article  PubMed  Google Scholar 

  15. Bush MA, Ahmad R, Jin N, Liu Y, Simonetti OP (2019) Patient specific prospective respiratory motion correction for efficient, free-breathing cardiovascular MRI. Magn Reson Med 81:3662–3674. https://doi.org/10.1002/mrm.27681

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chu LL, Knebel RJ, Shay AD, Santos J, Badawi RD, Gandara DR, Knollmann FD (2018) CT perfusion imaging of lung cancer: benefit of motion correction for blood flow estimates. Eur Radiol 28:5069–5075. https://doi.org/10.1007/s00330-018-5492-1

    Article  PubMed  Google Scholar 

  17. Novillo F, Van Eyndhoven S, Moeyersons J, Bogaert J, Claessen G, La Gerche A, Van Huffel S, Claus P (2019) Unsupervised respiratory signal extraction from ungated cardiac magnetic resonance imaging at rest and during exercise. Phys Med Biol 64:065001. https://doi.org/10.1088/1361-6560/ab02cd

    Article  PubMed  Google Scholar 

  18. Johansson A, Balter JM, Cao Y (2018) Abdominal DCE-MRI reconstruction with deformable motion correction for liver perfusion quantification. Med Phys 45:4529–4540. https://doi.org/10.1002/mp.13118

    Article  PubMed  Google Scholar 

  19. Dong W, Zhang L, Shi G, Wu X (2011) Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans Image Process 20:1838–1857. https://doi.org/10.1109/TIP.2011.2108306

    Article  PubMed  Google Scholar 

  20. Zhou R, Yang Y, Mathew RC, Mugler JP 3rd, Weller DS, Kramer CM, Ahmed AH, Jacob M, Salerno M (2019) Free-breathing cine imaging with motion-corrected reconstruction at 3T using SPiral Acquisition with Respiratory correction and Cardiac Self-gating (SPARCS). Magn Reson Med 82:706–720. https://doi.org/10.1002/mrm.27763

    Article  PubMed  PubMed Central  Google Scholar 

  21. Qiu W, Li D, Jin X, Liu F, Nguyen TD, Prince MR, Wang Y, Spincemaille P (2019) Sliding motion compensated low-rank plus sparse (SMC-LS) reconstruction for high spatiotemporal free-breathing liver 4D DCE-MRI. Magn Reson Imaging 58:56–66. https://doi.org/10.1016/j.mri.2019.01.012

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tianyi Zhou DT (2011) GoDec: randomized low-rank & sparse matrix decomposition in noisy case. Paper presented at the international conference on machine learning. Bellevue, WA

    Google Scholar 

  23. Sarma M, Hu P, Rapacchi S, Ennis D, Thomas A, Lee P, Kupelian P, Sheng K (2014) Accelerating dynamic magnetic resonance imaging (MRI) for lung tumor tracking based on low-rank decomposition in the spatial-temporal domain: a feasibility study based on simulation and preliminary prospective undersampled MRI. Int J Radiat Oncol Biol Phys 88:723–731. https://doi.org/10.1016/j.ijrobp.2013.11.217

    Article  PubMed  PubMed Central  Google Scholar 

  24. G. H G, C. F VL (1996). In: matrix computations. Johns Hopkins University Press, p 470

  25. Matoba M, Tonami H, Kondou T, Yokota H, Higashi K, Toga H, Sakuma T (2007) Lung carcinoma: diffusion-weighted MR imaging--preliminary evaluation with apparent diffusion coefficient. Radiology 243:570–577. https://doi.org/10.1148/radiol.2432060131

    Article  PubMed  Google Scholar 

  26. Benesty J, Chen J, Huang Y, Cohen I (2009) Pearson correlation coefficient. In: Noise Reduction in Speech Processing. Springer Topics in Signal Processing. pp 1–4. doi:https://doi.org/10.1007/978-3-642-00296-0_5

  27. Schober P, Boer C, Schwarte LA (2018) Correlation coefficients: appropriate use and interpretation. Anesth Analg 126:1763–1768. https://doi.org/10.1213/ANE.0000000000002864

    Article  PubMed  Google Scholar 

  28. Kraskov A, Stogbauer H, Grassberger P (2004) Estimating mutual information. Phys Rev E Stat Nonlinear Soft Matter Phys 69:066138. https://doi.org/10.1103/PhysRevE.69.066138

    Article  CAS  Google Scholar 

  29. King AP, Buerger C, Tsoumpas C, Marsden PK, Schaeffter T (2012) Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator. Med Image Anal 16:252–264. https://doi.org/10.1016/j.media.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  30. Manber R, Thielemans K, Hutton BF, Barnes A, Ourselin S, Arridge S, O'Meara C, Wan S, Atkinson D (2015) Practical PET respiratory motion correction in clinical PET/MR. Journal of Nuclear Medicine 56:890–896. https://doi.org/10.2967/jnumed.114.151779

    Article  PubMed  Google Scholar 

  31. Kolbitsch C, Neji R, Fenchel M, Mallia A, Marsden P, Schaeffter T (2018) Respiratory-resolved MR-based attenuation correction for motion-compensated cardiac PET-MR. Phys Med Biol 63:135008. https://doi.org/10.1088/1361-6560/aaca15

    Article  CAS  PubMed  Google Scholar 

  32. Pathak R, Tian J, Thacker NA, Morris DM, Ragheb H, Saunders C, Saunders M, Jackson A (2019) Considering tumour volume for motion corrected DWI of colorectal liver metastases increases sensitivity of ADC to detect treatment-induced changes. Sci Rep 9:3828. https://doi.org/10.1038/s41598-019-40565-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study has received funding by National Natural Science Foundation of China (61771039, 61872030 and 61571036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houjin Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(MP4 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Chen, H., Wan, Q. et al. Motion correction and noise removing in lung diffusion-weighted MRI using low-rank decomposition. Med Biol Eng Comput 58, 2095–2105 (2020). https://doi.org/10.1007/s11517-020-02224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02224-7

Keywords

Navigation