Skip to main content

Advertisement

Log in

Estimation of Parkinson’s disease severity using speech features and extreme gradient boosting

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In recent years, there is an increasing interest in building e-health systems. The systems built to deliver the health services with the use of internet and communication technologies aim to reduce the costs arising from outpatient visits of patients. Some of the related recent studies propose machine learning–based telediagnosis and telemonitoring systems for Parkinson’s disease (PD). Motivated from the studies showing the potential of speech disorders in PD telemonitoring systems, in this study, we aim to estimate the severity of PD from voice recordings of the patients using motor Unified Parkinson’s Disease Rating Scale (UPDRS) as the evaluation metric. For this purpose, we apply various speech processing algorithms to the voice signals of the patients and then use these features as input to a two-stage estimation model. The first step is to apply a wrapper-based feature selection algorithm, called Boruta, and select the most informative speech features. The second step is to feed the selected set of features to a decision tree–based boosting algorithm, extreme gradient boosting, which has been recently applied successfully in many machine learning tasks due to its generalization ability and speed. The feature selection analysis showed that the vibration pattern of the vocal fold is an important indicator of PD severity. Besides, we also investigate the effectiveness of using age and years passed since diagnosis as covariates together with speech features. The lowest mean absolute error with 3.87 was obtained by combining these covariates and speech features with prediction level fusion.

Framework for the proposed UPDRS estimation model

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdulhay E, Arunkumar N, Narasimhan K, Vellaiappan E, Venkatraman V (2018) Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease. Fut Gener Comput Syst 83:366–373

    Google Scholar 

  2. Afonso LC, Rosa GH, Pereira CR, Weber SA, Hook C, Albuquerque VHC, Papa JP (2019) A recurrence plot-based approach for Parkinson’s disease identification. Fut Gener Comput Syst 94:282–292

    Google Scholar 

  3. Al Mamun KA, Alhussein M, Sailunaz K, Islam MS (2017) Cloud based framework for Parkinson’s disease diagnosis and monitoring system for remote healthcare applications. Fut Gener Comput Syst 66:36–47

    Google Scholar 

  4. Asuncion A, Newman D (2007) UCI machine learning repository

  5. Bayestehtashk A, Asgari M, Shafran I, McNames J (2015) Fully automated assessment of the severity of Parkinson’s disease from speech. Comput Speech Lang 29(1):172–185

    PubMed  Google Scholar 

  6. Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13(Feb):281–305

    Google Scholar 

  7. Boersma P (2006) Praat: doing phonetics by computer. http://www.praat.org/

  8. Buza K, Ágnes Varga N (2016) ParkinsoNET: Estimation of UPDRS score using hubness-aware feedforward neural networks. Appl Artif Intell 30(6):541–555

    Google Scholar 

  9. Chan P, Holford N (2001) Drug treatment effects on disease progression. Ann Rev Pharmacol Toxicol 41(1):625–659

    CAS  Google Scholar 

  10. Chen T, Guestrin C (2016) Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. ACM, pp 785–794

  11. Chen X, Huang L, Xie D, Zhao Q (2018) EGBMMDA: extreme gradient boosting machine for miRNA-disease association prediction. Cell Death Disease 9(1):3

    PubMed  PubMed Central  Google Scholar 

  12. Chiba T, Kajiyama M (1958) The vowel: its nature and structure, vol 652. Phonetic society of Japan Tokyo

  13. Dorsey E, Constantinescu R, Thompson J, Biglan K, Holloway R, Kieburtz K, Marshall F, Ravina B, Schifitto G, Siderowf A et al (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68(5):384–386

    CAS  PubMed  Google Scholar 

  14. Duffy J (2013) Motor speech disorders: substrates, differential diagnosis, and management, 3 edn. Elsevier Mosby, St Louis

  15. Espay AJ, Bonato P, Nahab FB, Maetzler W, Dean JM, Klucken J, Eskofier BM, Merola A, Horak F, Lang AE, Reilmann R, Giuffrida J, Nieuwboer A, Horne M, Little MA, Litvan I, Simuni T, Dorsey ER, Burack MA, Kubota K, Kamondi A, Godinho C, Daneault J, Mitsi G, Krinke L, Hausdorff JM, Bloem BR, Papapetropoulos S (2016) Technology in Parkinson’s disease: challenges and opportunities. Mov Disord 31(9):1272–1282

    PubMed  PubMed Central  Google Scholar 

  16. Fahn S, Elton R et al (1987) Unified parkinson’s disease rating scale. Recent Dev Parkinson’s Disease 2:153–164

    Google Scholar 

  17. Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning, vol 1. Springer series in statistics, New York

  18. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Annals of statistics:1189–1232

  19. Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38(4):367–378

    Google Scholar 

  20. Gelzinis A, Verikas A, Bacauskiene M (2008) Automated speech analysis applied to laryngeal disease categorization. Comput Methods Prog Biomed 91(1):36–47

    CAS  Google Scholar 

  21. Godino-Llorente JI, Gomez-Vilda P, Blanco-Velasco M (2006) Dimensionality reduction of a pathological voice quality assessment system based on Gaussian mixture models and short-term cepstral parameters. IEEE Trans Biomed Eng 53(10):1943–1953

    PubMed  Google Scholar 

  22. Goetz CG, Stebbins GT (2004) Assuring interrater reliability for the UPDRS motor section: utility of the UPDRS teaching tape. Movement Disord 19(12):1453–1456

    PubMed  Google Scholar 

  23. Goetz CG, Stebbins GT, Wolff D, DeLeeuw W, Bronte-Stewart H, Elble R, Hallett M, Nutt J, Ramig L, Sanger T et al (2009) Testing objective measures of motor impairment in early Parkinson’s disease: feasibility study of an at-home testing device. Mov Disord 24(4):551–556

    PubMed  PubMed Central  Google Scholar 

  24. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    Google Scholar 

  25. Harel B, Cannizzaro M, Snyder PJ (2004) Variability in fundamental frequency during speech in prodromal and incipient Parkinson’s disease: a longitudinal case study. Brain Cogn 56(1):24–29

    PubMed  Google Scholar 

  26. Hartelius L, Svensson P (1994) Speech and swallowing symptoms associated with Parkinson’s disease and multiple sclerosis: a survey. Folia Phoniatrica Logopaedica 46(1):9–17

    CAS  Google Scholar 

  27. Herd CP, Tomlinson CL, Deane KH, Brady MC, Smith CH, Sackley CM, Clarke CE (2012) Speech and language therapy versus placebo or no intervention for speech problems in Parkinson’s disease. The Cochrane Library

  28. Hindle JV (2010) Ageing, neurodegeneration and Parkinson’s disease. Age Ageing 39(2):156–161

    PubMed  Google Scholar 

  29. Ho AK, Iansek R, Marigliani C, Bradshaw JL, Gates S (1999) Speech impairment in a large sample of patients with Parkinson’s disease. Behav Neurol 11(3):131–137

    CAS  PubMed  Google Scholar 

  30. Jacobson BH, Johnson A, Grywalski C, Silbergleit A, Jacobson G, Benninger MS, Newman CW (1997) The voice handicap index (VHI): development and validation. Amer J Speech-Lang Pathol 6 (3):66–70

    Google Scholar 

  31. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. Journal of Neurology. Neurosur Psych 79(4):368–376

    CAS  Google Scholar 

  32. Kowal SL, Dall TM, Chakrabarti R, Storm MV, Jain A (2013) The current and projected economic burden of Parkinson’s disease in the United States. Mov Disord 28(3):311–318

    PubMed  Google Scholar 

  33. Kumar M, Pachori RB, Acharya UR (2017) Characterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signals. Biomed Signal Process Control 31:301–308

    Google Scholar 

  34. Kursa M, Jankowski A, Rudnicki W (2010) Boruta – a system for feature selection. Fund Inf 101:271–285

    Google Scholar 

  35. Kursa M, Rudnicki W (2010) Feature selection with the boruta package. J Stat Softw 36 (11):1–13

    Google Scholar 

  36. Lipsmeier F, Taylor KI, Kilchenmann T, Wolf D, Scotland A, Schjodt-Eriksen J, Cheng WY, Fernandez-Garcia I, Siebourg-Polster J, Jin L et al (2018) Evaluation of smartphone-based testing to generate exploratory outcome measures in a phase 1 Parkinson’s disease clinical trial. Mov Disord 33 (8):1287–1297

    PubMed  PubMed Central  Google Scholar 

  37. Logemann JA, Fisher HB, Boshes B, Blonsky ER (1978) Frequency and cooccurrence of vocal tract dysfunctions in the speech of a large sample of Parkinson patients. J Speech Hear Disord 43(1):47–57

    CAS  PubMed  Google Scholar 

  38. Magdalinou N, Morris HR (2017) Clinical features and differential diagnosis of parkinson’s disease. In: Movement disorders curricula. Springer, pp 103–115

  39. Majdinasab F, Karkheiran S, Moradi N, Shahidi GA, Salehi M (2012) Relation between Voice Handicap Index (VHI) and disease severity in Iranian patients with Parkinson’s disease. Med J Islamic Republ Iran 26(4):157

    Google Scholar 

  40. Markaki M, Stylianou Y, Arias-Londoño JD, Godino-Llorente JI (2010) Dysphonia detection based on modulation spectral features and cepstral coefficients. In: 2010 IEEE international conference on Acoustics speech and signal processing (ICASSP). IEEE, pp 5162–5165

  41. Mekyska J, Janousova E, Gomez-Vilda P, Smekal Z, Rektorova I, Eliasova I, Kostalova M, Mrackova M, Alonso-Hernandez JB, Faundez-Zanuy M et al (2015) Robust and complex approach of pathological speech signal analysis. Neurocomputing 167:94–111

    Google Scholar 

  42. Mekyska J, Rektorova I, Smekal Z (2011) Selection of optimal parameters for automatic analysis of speech disorders in Parkinson’s disease. In: 2011 34th international conference on Telecommunications and signal processing (TSP). IEEE, pp 408–412

  43. Michaelis D, Gramss T, Strube HW (1997) Glottal-to-noise excitation ratio–a new measure for describing pathological voices. Acta Acust United Acust 83(4):700–706

    Google Scholar 

  44. Midi I, Dogan M, Koseoglu M, Can G, Sehitoglu MA, Gunal DI (2008) Voice abnormalities and their relation with motor dysfunction in Parkinson’s disease. Acta Neurol Scand 117(1):26–34

    CAS  PubMed  Google Scholar 

  45. Miller A (2002) Subset selection in regression. CRC Press, Boca Raton

  46. Murty KSR, Yegnanarayana B (2008) Epoch extraction from speech signals. IEEE Trans Audio Speech Lang Process 16(8):1602–1613

    Google Scholar 

  47. Naranjo L, Pérez CJ, Martín J (2017) Addressing voice recording replications for tracking Parkinson’s disease progression. Med Biol Eng Comput 55(3):365–373

    PubMed  Google Scholar 

  48. Ozkanca Y, Goksu Ozturk M, Ekmekci MN, Atkins DC, Demiroglu C, Hosseini Ghomi R (2019) Depression screening from voice samples of patients affected by parkinson’s disease. Digit Biomarkers 3(2):72–82

    Google Scholar 

  49. Martínez-Martín P , Gil-Nagel A, Gracia LM, Gómez JB , Martínez-Sarriés J, Bermejo F (1994) Unified Parkinson’s disease rating scale characteristics and structure. Mov Disord 9(1):76–83

    PubMed  Google Scholar 

  50. Pahwa R, Lyons KE (2013) Handbook of Parkinson’s disease. Crc Press, Boca Raton

  51. Paja W, Wrzesień M (2013) Melanoma important features selection using random forest approach. In: 2013 6Th international conference on human system interactions (HSI). IEEE, pp 415–418

  52. Patidar S, Pachori RB, Acharya UR (2015) Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals. Knowl-Based Syst 82:1–10

    Google Scholar 

  53. Patidar S, Pachori RB, Upadhyay A, Acharya UR (2017) An integrated alcoholic index using tunable-Q wavelet transform based features extracted from EEG signals for diagnosis of alcoholism. Appl Soft Comput 50:71–78

    Google Scholar 

  54. Perry TL, Ohde RN, Ashmead DH (2001) The acoustic bases for gender identification from children’s voices. J Acoust Soc Amer 109(6):2988–2998

    CAS  Google Scholar 

  55. Poona NK, Ismail R (2014) Using Boruta-selected spectroscopic wavebands for the asymptomatic detection of Fusarium circinatum stress. IEEE J Sel Top Appl Earth Observ Remote Sens 7(9):3764–3772

    Google Scholar 

  56. Poona NK, Van Niekerk A, Nadel RL, Ismail R (2016) Random forest (RF) wrappers for waveband selection and classification of hyperspectral data. Appl Spectroscopy 70(2):322–333

    CAS  Google Scholar 

  57. Post B, Merkus MP, de Bie R, de Haan RJ, Speelman JD (2005) Unified Parkinson’s disease rating scale motor examination: are ratings of nurses, residents in neurology, and movement disorders specialists interchangeable?. Movement Disord 20(12):1577–1584

    PubMed  Google Scholar 

  58. Rahn DA, Chou M, Jiang JJ, Zhang Y (2007) Phonatory impairment in parkinson’s disease: evidence from nonlinear dynamic analysis and perturbation analysis. J Voice 21(1):64–71

    PubMed  Google Scholar 

  59. Ramaker C, Marinus J, Stiggelbout AM, Van Hilten BJ (2002) Systematic evaluation of rating scales for impairment and disability in Parkinson’s disease. Mov Disord 17(5):867–876

    PubMed  Google Scholar 

  60. Richards M, Marder K, Cote L, Mayeux R (1994) Interrater reliability of the Unified Parkinson’s Disease Rating Scale motor examination. Mov Disord 9(1):89–91

    CAS  PubMed  Google Scholar 

  61. Rusz J, Cmejla R, Ruzickova H, Ruzicka E (2011) Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson’s disease. J Acoust Soc Amer 129(1):350–367

    CAS  Google Scholar 

  62. Saeb S, Lonini L, Jayaraman A, Mohr DC, Kording KP (2017) The need to approximate the use-case in clinical machine learning. GigaScience 6(5):1–9

    PubMed  PubMed Central  Google Scholar 

  63. Sakar BE, Isenkul ME, Sakar CO, Sertbas A, Gurgen F, Delil S, Apaydin H, Kursun O (2013) Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J Biomed Health Inf 17(4):828–834

    Google Scholar 

  64. Sakar CO, Kursun O (2010) Telediagnosis of Parkinson’s disease using measurements of dysphonia. J Med Syst 34(4):591–599

    PubMed  Google Scholar 

  65. Sakar CO, Serbes G, Gunduz A, Tunc HC, Nizam H, Sakar BE, Tutuncu M, Aydin T, Isenkul ME, Apaydin H (2019) A comparative analysis of speech signal processing algorithms for Parkinson’s disease classification and the use of the tunable Q-factor wavelet transform. Appl Soft Comput 74:255–263

    Google Scholar 

  66. Schoentgen J, De Guchteneere R (1995) Time series analysis of jitter. J Phon 23(1-2):189–201

    Google Scholar 

  67. Schüpbach WMM, Corvol JC, Czernecki V, Djebara MB, Golmard JL, Agid Y, Hartmann A (2010) Segmental progression of early untreated Parkinson’s disease: a novel approach to clinical rating. J Neurol Neurosurg Psych 81(1):20–25

    Google Scholar 

  68. Selesnick IW (2011) Wavelet transform with tunable Q-factor. IEEE Trans Signal Process 59 (8):3560–3575

    Google Scholar 

  69. Serbes G, Sakar BE, Gulcur HO, Aydin N (2015) An emboli detection system based on Dual Tree Complex Wavelet Transform and ensemble learning. Appl Soft Comput 37:87–94

    Google Scholar 

  70. Shue YL (2010) The voice source in speech production: data, analysis and models. Ph.D. thesis, University of California, Los Angeles

  71. Siderowf A, McDermott M, Kieburtz K, Blindauer K, Plumb S, Shoulson I, Group PS (2002) Test–retest reliability of the unified Parkinson’s disease rating scale in patients with early Parkinson’s disease: results from a multicenter clinical trial. Movement Disord 17(4):758–763

    PubMed  Google Scholar 

  72. Simpson AP (2009) Phonetic differences between male and female speech. Lang Linguist Compass 3(2):621–640

    Google Scholar 

  73. Singhi SK, Liu H (2006) Feature subset selection bias for classification learning. In: Proceedings of the 23rd international conference on Machine learning. ACM, pp 849–856

  74. Sánchez-Ferro Á, Elshehabi M, Godinho C, Salkovic D, Hobert MA, Domingos J, Uem JM, Ferreira JJ, Maetzler W (2016) New methods for the assessment of Parkinson’s disease (2005 to 2015): A systematic review. Mov Disord 31(9):1283–1292

    PubMed  Google Scholar 

  75. Touzani S, Granderson J, Fernandes S (2018) Gradient boosting machine for modeling the energy consumption of commercial buildings. Energy Build 158:1533–1543

    Google Scholar 

  76. Tsanas A (2012) Accurate telemonitoring of Parkinson’s disease symptom severity using nonlinear speech signal processing and statistical machine learning. Ph.D. thesis, Oxford Centre for Industrial and Applied Mathematics, University of Oxford, UK

  77. Tsanas A, Little MA, McSharry PE, Ramig LO (2010) Accurate telemonitoring of Parkinson’s disease progression by noninvasive speech tests. IEEE Trans Biomed Eng 57(4):884–893

    PubMed  Google Scholar 

  78. Tsanas A, Little MA, McSharry PE, Ramig LO (2011) Nonlinear speech analysis algorithms mapped to a standard metric achieve clinically useful quantification of average Parkinson’s disease symptom severity. J R Soc Interface 8(59):842–855

    PubMed  Google Scholar 

  79. Tsanas A, Little MA, McSharry PE, Spielman J, Ramig LO (2012) Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease. IEEE Trans Biomed Eng 59(5):1264–1271

    PubMed  Google Scholar 

  80. Tsanas A, Ma L, McSharry P, Ramig L (2010) New nonlinear markers and insights into speech signal degradation for effective tracking of Parkinson’s disease symptom severity. In: New nonlinear markers and insights into speech signal degradation for effective tracking of parkinson’s disease symptom severity, Krakow, pp 457–460

  81. Ulukaya S, Serbes G, Kahya YP (2017) Overcomplete discrete wavelet transform based respiratory sound discrimination with feature and decision level fusion. Biomed Signal Process Control 38:322–336

    Google Scholar 

  82. Ulukaya S, Serbes G, Kahya YP (2019) Wheeze type classification using non-dyadic wavelet transform based optimal energy ratio technique. Comput Biol Med 104:175–182

    PubMed  Google Scholar 

  83. Vaiciukynas E, Verikas A, Gelzinis A, Bacauskiene M (2017) Detecting Parkinson’s disease from sustained phonation and speech signals. Plos One 12(10):e0185613

  84. Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, Nelson LM (2003) Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Amer J Epidemiol 157(11):1015–1022

    Google Scholar 

  85. Vos T et al (2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990—2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390(10100):1211–1259

    Google Scholar 

  86. Weismer G, Jeng JY, Laures JS, Kent RD, Kent JF (2001) Acoustic and intelligibility characteristics of sentence production in neurogenic speech disorders. Folia Phoniatrica Logopaedica 53(1):1–18

    CAS  Google Scholar 

  87. Wenning GK, Tison F, Seppi K, Sampaio C, Diem A, Yekhlef F, Ghorayeb I, Ory F, Galitzky M, Scaravilli T et al (2004) Development and validation of the unified multiple system atrophy rating scale (UMSARS). Mov Disord 19(12):1391–1402

    PubMed  Google Scholar 

  88. Whitmore LS, Davis RW, McCormick RL, Gladden JM, Simmons BA, George A, Hudson CM (2016) BiocompoundML: a general biofuel property screening tool for biological molecules using Random Forest Classifiers. Energy Fuels 30(10):8410– 8418

    CAS  Google Scholar 

  89. Zarzur AP, Duarte IS, Gonċalves GdNH, Martins MAUR (2010) Laryngeal electromyography and acoustic voice analysis in Parkinson’s disease: a comparative study. Brazil J Otorhinolaryngol 76 (1):40–43

    Google Scholar 

  90. Zhan A, Mohan S, Tarolli C et al (2018) Using smartphones and machine learning to quantify parkinson disease severity: The mobile parkinson disease score. JAMA Neurology

  91. Zhang Y, Haghani A (2015) A gradient boosting method to improve travel time prediction. Transp Res Part C: Emerg Technol 58:308–324

    Google Scholar 

  92. Zheng A, Casari A (2018) Feature engineering for machine learning: principles and techniques for data scientists. O’Reilly Media, Inc.

Download references

Funding

This research was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) grant number 215E008, https://www.tubitak.gov.tr/en.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hunkar C. Tunc.

Ethics declarations

The study has the approval of the Clinical Research Ethics Committee of Bahcesehir University.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunc, H.C., Sakar, C.O., Apaydin, H. et al. Estimation of Parkinson’s disease severity using speech features and extreme gradient boosting. Med Biol Eng Comput 58, 2757–2773 (2020). https://doi.org/10.1007/s11517-020-02250-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02250-5

Keywords

Navigation