Skip to main content
Log in

Two-dimensional iterative projection method for subsample speckle tracking of ultrasound images

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Speckle tracking provides robust motion estimation necessary to create accurate post-processed images. These methods are known to be less accurate in the lateral dimension compared with the axial dimension due to the limitations on the lateral resolution of ultrasound scanning. This paper proposes a two-dimensional iterative projection (TDIP) algorithm using the Riesz transform to generate the analytic signals. The TDIP is an improvement to an already accurate speckle tracking algorithm called the phase coupled (PC) method. The PC method projects the intersection of gradients on the correlation map to the zero phase contour to estimate displacement. The TDIP method performs iterative projections and uses the aggregate of these projected locations to estimate the motion, in addition to rejecting inaccurate projections by checking them against the aggregate projection location. The TDIP additionally adopts the Riesz transform to generate two-dimensional analytic signals to improve lateral accuracy. The Riesz transform is a multidimensional extension of the Hilbert transform into the nD Euclidean space and therefore can be used to include data in both axial and lateral dimensions as opposed to the commonly used Hilbert transform which is one dimensional. The accuracy of the TDIP is quantitatively proven on simulated datasets from the Field II simulation program and on experimental data from two flow phantoms. At all cases, the TDIP is more accurate than the PC algorithm at two-dimensional displacement estimation.

The lateral estimates from the Phase Coupled algorithm. This method uses the Hilbert transform for the analytic signal. There is large estimated motion within the flow blockage bounded by the red, fin shape in the center of the flow channel. The flow channel itself is also bounded by dashed, red lines.

The lateral estimates from the TDIP method. This method is not tracking motion within the blockage in the center of the flow channel. The channel and the blockage are both bounded by dashed, red lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Burckhardt CB (1978) Speckle in ultrasound B-mode scans. IEEE J SU 25(1):1–6

    Google Scholar 

  2. Notomi Y, Shiota T, Popović ZB, et al. (2005) Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J Am Coll Cardiol 45(12):2034–2041

    Article  Google Scholar 

  3. Korstanje JWH, Selles RW, Stam HJ, et al. (2010) Development and validation of ultrasound speckle tracking to quantify tendon displacement. J Biomechan 43(7):1373–1379

    Article  Google Scholar 

  4. Chen X, Zohdy MJ, Emelianov SY, et al. (2004) Lateral speckle tracking using synthetic lateral phase. IEEE Trans Ultrason Ferroelectr Freq Control 51(5):540–550

    Article  Google Scholar 

  5. Bharadwaj S, Almekkawy M (2020) Faster search algorithm for speckle tracking in ultrasound images. In: 42nd annual international conference of the IEEE engineering in medicine biology society (EMBC), pp 2142–2146

  6. Alessandrini M, Bernard O, Basarab A, et al. (2013) Multiscale optical flow computation from the monogenic signal. IRBM 34(1):33–37

    Article  Google Scholar 

  7. Chunke Y, Terada K, Oe S (1996) Motion analysis of echocardiograph using optical flow method. In: Systems, man, and cybernetics, IEEE international conference on, IEEE, vol 1, pp 672–677

  8. Douziech F, Liebgott H, Bernard O, et al. (2011) Affine phase based motion estimation applied to echocardiography. In: Ultrasonics symposium (IUS),IEEE international, IEEE, pp 736–739

  9. Udesen J, Jensen JA (2006) Investigation of transverse oscillation method. IEEE Trans Ultrason Ferroelectr Freq Control 53(5):959–971

    Article  Google Scholar 

  10. Alessandrini M, Basarab A, Boussel L, et al. (2014) A new technique for the estimation of cardiac motion in echocardiography based on transverse oscillations: a preliminary evaluation in silico and a feasibility demonstration in vivo. IEEE Trans Med Imaging 33(5):1148–1162

    Article  Google Scholar 

  11. Pihl MJ, Jensen JA (2014) A transverse oscillation approach for estimation of three-dimensional velocity vectors, part i: concept and simulation study. IEEE Trans Ultrason Ferroelectr Freq Control 61(10):1599–1607

    Article  Google Scholar 

  12. Lenge M, Ramalli A, Tortoli P, et al. (2015) Plane-wave transverse oscillation for high-frame-rate 2-d vector flow imaging. IEEE Trans Ultrason Ferroelectr Freq Control 62(12):2126–2137

    Article  Google Scholar 

  13. Kasai C, Namekawa K, Koyano A, et al. (1985) Real-time two-dimensional blood flow imaging using an autocorrelation technique. IEEE Trans Sonics Ultrason 32(3):458–464

    Article  Google Scholar 

  14. Loupas T, Powers J, Gill RW (1995) An axial velocity estimator for ultrasound blood flow imaging, based on a full evaluation of the doppler equation by means of a two-dimensional autocorrelation approach. IEEE Trans Ultrason Ferroelectr Freq Control 42(4):672–688

    Article  Google Scholar 

  15. Pinton GF, Dahl JJ, Trahey GE (2006) Rapid tracking of small displacements with ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 53(6):1103–1117

    Article  Google Scholar 

  16. Rivaz H, Boctor E, Foroughi P, et al. (2008) Ultrasound elastography: a dynamic programming approach. IEEE Trans Med Imaging 27(10):1373–1377

    Article  Google Scholar 

  17. Petrank Y, Huang L, O’Donnell M (2009) Reduced peak-hopping artifacts in ultrasonic strain estimation using the viterbi algorithm. IEEE Trans Ultrason Ferroelectr Freq Control 56(7):1359–1367

    Article  Google Scholar 

  18. Jiang J, Hall TJ (2009) A generalized speckle tracking algorithm for ultrasonic strain imaging using dynamic programming. UMB 35(11):1863–1879

    Google Scholar 

  19. Trahey GE, Allison JW, Von Ramm OT (1987) Angle independent ultrasonic detection of blood flow. IEEE Trans Biomed Eng 12(BME-34):965–967

    Article  Google Scholar 

  20. Lubinski MA, Emelianov SY, O’Donnell M (1999) Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation. IEEE Trans Ultrason Ferroelectr Freq Control 46(1):82–96

    Article  CAS  Google Scholar 

  21. O’Donnell M, Skovoroda AR, Shapo BM, et al. (1994) Internal displacement and strain imaging using ultrasonic speckle tracking. IEEE Trans Ultrason Ferroelectr Freq Control 41(3):314–325

    Article  Google Scholar 

  22. Bohs LN, Trahey GE (1991) A novel method for angle independent ultrasonic imaging of blood flow and tissue motion. IEEE Trans Biomed Eng 38(3):280–286

    Article  CAS  Google Scholar 

  23. Palmeri ML, McAleavey SA, Trahey GE, et al. (2006) Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media. IEEE Trans Ultrason Ferroelectr Freq Control 53(7):1300–1313

    Article  Google Scholar 

  24. Nightingale K, Soo MS, Nightingale R, et al. (2002) Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol 28(2):227–235

    Article  Google Scholar 

  25. Afsham N, Najafi M, Abolmaesumi P, et al. (2014) A generalized correlation-based model for out-of-plane motion estimation in freehand ultrasound. IEEE Trans Med Imaging 33(1):186– 199

    Article  Google Scholar 

  26. Byram B, Trahey GE, Palmeri M (2013) Bayesian speckle tracking. Part II: biased ultrasound displacement estimation. IEEE Trans Ultrason Ferroelectr Freq Control 60(1):144–157

    Article  Google Scholar 

  27. Ebbini ES (2006) Phase-coupled two-dimensional speckle tracking algorithm. Ultrason Ferroelectr Freq Control, IEEE Trans 53(5):972–990

    Article  Google Scholar 

  28. Sarvazyan AP, Rudenko OV, Swanson SD, et al. (1998) Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol 24(9):1419–1435

    Article  CAS  Google Scholar 

  29. Felsberg M, Sommer G (2001) The monogenic signal. Signal Process IEEE Transactions on 49(12):3136–3144

    Article  Google Scholar 

  30. Hahn SL (1996) Hilbert transforms in signal processing, vol 2. Artech House, Boston

    Google Scholar 

  31. Zheng F (2015) A two dimensional speckle tracking method based on zero phase crossing in ultrasound. PhD Thesis, University of Minnesota

  32. Bülow T, Sommer G (2001) Hypercomplex signals-a novel extension of the analytic signal to the multidimensional case. IEEE Trans Signal Process 49(11):2844–2852

    Article  Google Scholar 

  33. Granlund GH, Knutsson H (2013) Signal processing for computer vision. Springer Science & Business Media, New York

    Google Scholar 

  34. Stein EM, Weiss G (2016) Introduction to Fourier analysis on Euclidean spaces (PMS-32), vol 32. Princeton University Press, Princeton

    Google Scholar 

  35. Wachinger C, Klein T, Navab N (2012) The 2d analytic signal for envelope detection and feature extraction on ultrasound images. Med Image Anal 16(6):1073–1084

    Article  Google Scholar 

  36. Alessandrini M, Basarab A, Liebgott H, et al. (2013) Myocardial motion estimation from medical images using the monogenic signal. IEEE Trans Image Process 22(3):1084–1095

    Article  Google Scholar 

  37. Jensen JA (1996) Field: a program for simulating ultrasound systems. In: 10th nordicbaltic conference on biomedical imaging, vol. 4, Supplement 1, Part 1, vol 4. Citeseer, Canada, pp 351–353

  38. Jensen JA, Svendsen NB (1992) Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans Ultrason Ferroelectr Freq Control 39(2):262–267

    Article  CAS  Google Scholar 

  39. Bülow T (1999) Hypercomplex spectral signal representations for the processing and analysis of images. PhD Thesis, Universität Kiel. Institut für Informatik und Praktische Mathematik

  40. Held S, Storath M, Massopust P, et al. (2010) Steerable wavelet frames based on the riesz transform. IEEE Trans Image Process 19(3):653–667

    Article  Google Scholar 

  41. Bernstein S, Bouchot JL, Reinhardt M, et al. (2013) Generalized analytic signals in image processing: comparison, theory and applications. In: Quaternion and clifford fourier transforms and wavelets. Springer, New York, pp 221–246

  42. Almekkawy MK, Adibi Y, Zheng F, et al. (2014) Two-dimensional speckle tracking using zero phase crossing with riesz transform. In: Proceedings of Meetings on Acoustics 168ASA, vol 22. ASA, p 020004

  43. Wan Y, Liu D, Ebbini ES (2010) Simultaneous imaging of tissue motion and flow velocity using 2d phase-coupled speckle tracking. In: Ultrasonics symposium (IUS), IEEE. IEEE, pp 487–490

  44. Luo J, Konofagou EE (2010) A fast normalized cross-correlation calculation method for motion estimation. IEEE Trans Ultrason Ferroelectr Freq Control 57(6):1347–1357

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Emad Ebbini from UISPL at University of Minnesota for sharing the phantom data with our group for use in this analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon Rebholz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebholz, B., Zheng, F. & Almekkawy, M. Two-dimensional iterative projection method for subsample speckle tracking of ultrasound images. Med Biol Eng Comput 58, 2937–2951 (2020). https://doi.org/10.1007/s11517-020-02264-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02264-z

Keywords

Navigation