Skip to main content

Advertisement

Log in

Changes of biomechanics induced by Equistasi® in Parkinson’s disease: coupling between balance and lower limb joints kinematics

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Axial disorders, including postural deformities, postural instability, and gait disturbances, are among the most disabling symptoms of Parkinson’s disease (PD). Equistasi®, a wearable proprioceptive stabilizer device, has been proposed as neurological rehabilitative device for this set of symptoms. To investigate the effects of the device on gait and balance, 24 participants affected by PD were enrolled in this crossover double-dummy, randomized, controlled study. Subjects were assessed four times before and after 8 weeks treatment with either active or placebo device; one-month wash-out was taken between treatments, in a 20-week timeframe. Gait analysis and instrumented Romberg test were performed with the aid of a sterofotogrammetric system and two force plates. Joint kinematics, spatiotemporal parameters of gait and center of pressure parameters were extracted. Paired T-test (p < 0.05) was adopted after evidence of normality to compare the variables across different acquisition sessions; Wilcoxon was adopted for non-normal distributions. Before and after the treatment with the active device, statistically significant improvements were observed in trunk flexion extension and in the ankle dorsi-plantarflexion. Regarding balance assessment, significant improvements were reported at the frequencies corresponding to vestibular system. These findings may open new possibilities on PD’s rehabilitative interventions.

Graphical abstract

Research question, tailored design of the study, experimental acquisition overview, main findings, and conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Deng H, Wang P, Jankovic J (2018) The genetics of Parkinson disease. Ageing Res Rev 42:72–85. https://doi.org/10.1016/j.arr.2017.12.007

    Article  CAS  PubMed  Google Scholar 

  2. Lamont RM, Morris ME, Woollacott MH, Brauer SG (2012, 2012) Community walking in people with Parkinson's disease. Parkinsons Dis 856237. https://doi.org/10.1155/2012/856237

  3. Morris ME, Martin CL, Schenkman ML (2010) Standing out with Parkinson disease: evidence-based physical therapy for gait disorders. Phys Ther 90(2):280–288. https://doi.org/10.2522/ptj.20090091

    Article  PubMed  PubMed Central  Google Scholar 

  4. Abbruzzese G, Pelosin E, Rehabilitation of Parkinson’s disease, in: G. Sandrini, V. Homberg, L. Saltuari, N. Smania, A. Pedrocchi, Advanced technologies for the rehabilitation of gait and balance disorders. Biosystems & Biorobotics. vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-72736-3

  5. Kleiner A, Galli M, Gaglione M, et al (2015) The Parkinsonian Gait Spatiotemporal Parameters Quantified by a Single Inertial Sensor before and after Automated Mechanical Peripheral Stimulation Treatment. Parkinson’s Disease. 6 pages. https://doi.org/10.1155/2015/390512

  6. Giardini M, Nardone A, Godi M et al (2018) Instrumental or physical-exercise rehabilitation of balance improves both balance and gait in Parkinson’s disease. Neural Plasticity:17. https://doi.org/10.1155/2018/5614242

  7. Volpe D, Pavan D, Guiotto A, Fichera F, Scalchi V, Sawacha Z (2016) Effect of underwater gait training on Parkinson's disease: assessment through 3D underwater and on land gait analysis. Gait Posture 49(1):S25–S26. https://doi.org/10.1016/j.gaitpost.2016.11.019

    Article  Google Scholar 

  8. Ferrazzoli D, Ortelli P, Cucca A, Bakdounes L, Volpe D (2020) Motor-cognitive approach and aerobic training: a synergism for rehabilitative intervention in Parkinson's disease. Neurodegener Dis Manag 10(1):41–55. https://doi.org/10.2217/nmt-2019-0025

    Article  PubMed  Google Scholar 

  9. Volpe D, Giantin MG, Fasano A (2014) A wearable proprioceptive stabilizer (EquistasiH) for rehabilitation of postural instability in Parkinson’s disease: a phase II randomized double-blind, double-dummy, controlled study. PLoS One. 9:11:e112065. https://doi.org/10.1371/journal.pone.0112065

  10. Olson M, Lockhart TE, Lieberman A (2019) Motor learning deficits in Parkinson's disease (PD) and their effect on training response in gait and balance: a narrative review. Front Neurol 10:62

    Article  PubMed  PubMed Central  Google Scholar 

  11. Moisello C (2015) TMS enhances retention of a motor skill in Parkinson's disease. Brain Stimul 8(2):224–230. https://doi.org/10.1016/j.brs.2014.11.005

    Article  PubMed  Google Scholar 

  12. Khajuria JP, Joshi D (2018) Comprehensive statistical analysis of the gait parameters in neurodegenerative disease. Neurophysiology. 50:38–51. https://doi.org/10.1007/s11062-018-9715-5

    Article  Google Scholar 

  13. De Nunzio AM, Grasso M, Nardone A, Godi M, Schieppati M (2010) Alternate rhythmic vibratory stimulation of trunk muscles affects walking cadence and velocity in Parkinson’s disease. Clin Neurophysiol 121(2):240–247. https://doi.org/10.1016/j.clinph.2009.10.018

    Article  PubMed  Google Scholar 

  14. Serio F, Minosa C, De Luca M, Conte P, Albani G, Peppe A (2019) Focal vibration training (Equistasi®) to improve posture stability. A retrospective study in Parkinson’s disease. Sensors 19:2101. https://doi.org/10.3390/s19092101

    Article  PubMed Central  Google Scholar 

  15. Iuppariello L et al (2015) The effects of the vibratory stimulation of the neck muscles for the evaluation of stepping performance in Parkinson's disease. 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings. Turin, 2015, 606–609. https://doi.org/10.1109/MeMeA.2015.7145275

  16. Kleiner A, Galli M, Gaglione M, Hildebrand D, et al (2015) The Parkinsonian Gait Spatiotemporal Parameters Quantifed by a Single Inertial Sensor before and after Automated Mechanical Peripheral Stimulation Treatment. Parkinson’s Disease. 6. https://doi.org/10.1155/2015/390512

  17. Alfonsi E, Paone P, Tassorelli C et al (2015) Acute effects of high-frequency microfocal vibratory stimulation on the H reflex of the soleus muscle. A double-blind study in health subjects. Funct Neurol 30(4):269–274. https://doi.org/10.11138/fneur/2015.30.4.269

    Article  PubMed  Google Scholar 

  18. Peppe A, Paravati S, Baldassarre MG, Bakdounes L et al (2019) Proprioceptive focal stimulation (Equistasi®) may improve the quality of gait in middle-moderate Parkinson’s disease patients. Double-blind, double-dummy, randomized, crossover, Italian multicentric study. Front Neurol 10(998). https://doi.org/10.3389/fneur.2019.00998

  19. Perry J, Davis JR (1992) Gait analysis: normal and pathological function. J Pediatr Orthop 12(6):815

    Article  Google Scholar 

  20. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442. https://doi.org/10.1212/WNL.17.5.427

    Article  CAS  PubMed  Google Scholar 

  21. Folstein FE, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198. https://doi.org/10.1016/0022-3956(75)90026-6

    Article  CAS  PubMed  Google Scholar 

  22. Volpe D, Spolaor F, Sawacha Z, Guiotto A, Pavan D et al (2020) Muscular activation changes in lower limbs after underwater gait training in Parkinson’s disease: a surface emg pilot study. Gait Posture 80(2020):185–191. https://doi.org/10.1016/j.gaitpost.2020.03.017

    Article  CAS  PubMed  Google Scholar 

  23. Sawacha Z, Guarneri G, Cristoferi G, Guiotto A, Avogaro A, Cobelli C (2009) Diabetic gait and posture abnormalities: a biomechanical investigation through three dimensional gait analysis. Clin Biomech (Bristol, Avon) 24(9):722–728

    Article  Google Scholar 

  24. Sawacha Z, Carraro E, Del Din S et al (2012) Biomechanical assessment of balance and posture in subjects with ankylosing spondylitis. J Neuro Eng Rehabil 9:63. https://doi.org/10.1186/1743-0003-9-63

    Article  Google Scholar 

  25. Leardini A, Sawacha Z, Paolini G, Ingrosso S, Nativo R, Benedetti MG (2007) A new anatomically based protocol for gait analysis in children. Gait Posture 26(4):560–571. https://doi.org/10.1016/j.gaitpost.2006.12.018

    Article  PubMed  Google Scholar 

  26. Del Din S, Carraro E, Sawacha Z, Guiotto A, Bonaldo L, Masiero S, Cobelli C (2011) Impaired gait in ankylosing spondylitis. Med Biol Eng Comput 49:801–809. https://doi.org/10.1007/s11517-010-0731-x

    Article  PubMed  Google Scholar 

  27. Della Croce U, Leardini A, Chiari L, Cappozzo A (2005) Human movement analysis using stereophotogrammetry: part 4: assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture 21(2):226–237. https://doi.org/10.1016/j.gaitpost.2004.05.003

    Article  PubMed  Google Scholar 

  28. Fukunaga JY, Quitschal RM, Donà F, Ferraz HB, Ganança MM, Caovilla HH (2014) Postural control in Parkinson’s disease. Braz J Otorhinol 80(6):508–514. https://doi.org/10.1016/j.bjorl.2014.05.032

    Article  Google Scholar 

  29. Oppenheim U, Kohen-Raz R, Alex D, Kohen-Raz A, Azarya M (1999) Postural characteristics of diabetic neuropathy. Diabetes Care 22(2):328–332. https://doi.org/10.2337/diacare.22.2.328

    Article  CAS  PubMed  Google Scholar 

  30. Nardone A, Schieppati M (2006) Balance in Parkinson’s disease under static and dynamic conditions. Mov Disord 21:1515–1520. https://doi.org/10.1002/mds.21015

    Article  PubMed  Google Scholar 

  31. Horak FB, Nutt JG, Nashner LM (1992) Postural inflexibility in parkinsonian subjects. J Neurol Sci 111:46–58. https://doi.org/10.1016/0022-510x(92)90111-w

    Article  CAS  PubMed  Google Scholar 

  32. Paul SS, Canning CG, Sherrington C, Fung VS (2012) Reproducibility of measures of leg muscle power, leg muscle strength, postural sway and mobility in people with Parkinson’s disease. Gait Posture 36:639–642. https://doi.org/10.1016/j.gaitpost.2012.04.013

    Article  PubMed  Google Scholar 

  33. Nonnekes J, de Kam D, Geurts A, Weerdesteyn V, Bloem BR (2013) Unraveling the mechanisms underlying postural instability in Parkinson’s disease using dynamic posturography. Expert Rev Neurother 13:1303–1308. https://doi.org/10.1586/14737175.2013.839231

    Article  CAS  PubMed  Google Scholar 

  34. Schieppati M, Nardone A (1991) Free and supported stance in Parkinson’s disease. The effect of posture and ‘postural set’ on leg muscle responses to perturbation, and its relation to the severity of the disease. Brain. 114(Pt 3):1227–1244. https://doi.org/10.1093/brain/114.3.1227

    Article  PubMed  Google Scholar 

  35. Thompson M, Medley A (2007) Forward and lateral sitting functional reach in younger, middle-aged, and older adults. J Geriatr Phys Ther 30:43–48. https://doi.org/10.1519/00139143-200708000-00002

    Article  PubMed  Google Scholar 

  36. Slijper H, Latash ML (2004) The effects of muscle vibration on anticipatory postural adjustments. Brain Res 1015:57–72. https://doi.org/10.1016/j.brainres.2004.04.054

    Article  CAS  PubMed  Google Scholar 

  37. Courtine G, De Nunzio AM, Schmid M, Beretta MV, Schieppati M (2007) Stance- and locomotion-dependent processing of vibration-induced proprioceptive inflow from multiple muscles in humans. J Neurophysiol 97:772–779. https://doi.org/10.1152/jn.00764.2006

    Article  PubMed  Google Scholar 

  38. Kording KP, Wolpert DM (2006) Bayesian decision theory in sensorimotor control. Trends Cogn Sci 10:319–326. https://doi.org/10.1016/j.tics.2006.05.003

    Article  PubMed  Google Scholar 

  39. Marsden CD, Meadows JC, Hodgson HJ (1969) Observations on the reflex response to muscle vibration in man and its voluntary control. Brain. 92:829–846. https://doi.org/10.1093/brain/92.4.829

    Article  CAS  PubMed  Google Scholar 

  40. Nanhoe-Mahabier W, Allum JH, Pasman EP, Overeem S, Bloem BR (2012) The effects of vibrotactile biofeedback training on trunk sway in Parkinson’s disease patients. Parkinsonism Relat Disord 18:1017–1021. https://doi.org/10.1016/j.parkreldis.2012.05.018

    Article  CAS  PubMed  Google Scholar 

  41. Nunzio AM, Grasso M, Nardone A, Godi M, Schieppati M (2010) Alternate rhythmic vibratory stimulation of trunk muscles affects walking cadence and velocity in Parkinson’s disease. Clin Neurophysiol 121:240–247. https://doi.org/10.1016/j.clinph.2009.10.018

    Article  PubMed  Google Scholar 

  42. Rocchi L, Chiari L, Mancini M, Carlson-Kuhta P, Gross A et al (2006) Step initiation in Parkinson’s disease: influence of initial stance conditions. Neurosci Lett 406:128–132. https://doi.org/10.1016/j.neulet.2006.07.027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Marco Romanato’s PhD course grant is supported by Fondazione Fresco Parkinson Institute Italia Onlus. Annamaria Guiotto’s post-doctoral fellowship is supported by MIUR (Italian Minister for Education) under the initiative “Departments of Excellence” (Law 232/2016). The authors would like to acknowledge Davide Pavan and Federica Cibin for participating in the initial stage of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zimi Sawacha.

Ethics declarations

All authors disclose that we do not have any financial or personal relationships with other people or organizations that could inappropriately influence or bias our work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 588 kb)

Glossary

PD

Parkinson’s Disease

ST

Spatiotemporal

HS

Healthy subjects

COP

Center of pressure

EC

Eyes close

EO

Eyes open

EMG

Electromyography

BE

Before Equistasi

AE

After Equistasi

BP

Before Placebo

AP

After Placebo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanato, M., Guiotto, A., Spolaor, F. et al. Changes of biomechanics induced by Equistasi® in Parkinson’s disease: coupling between balance and lower limb joints kinematics. Med Biol Eng Comput 59, 1403–1415 (2021). https://doi.org/10.1007/s11517-021-02373-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02373-3

Keywords

Navigation