Skip to main content

Advertisement

Log in

A comprehensive survey on non-invasive wearable bladder volume monitoring systems

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Measuring the volume of urine in the bladder is a significant issue in patients who suffer from the lack of bladder fullness sensation or have problems with timeliness getting to the restroom, such as spinal cord injury patients and some of the elderlies. Real-time monitoring of the bladder, therefore, can be highly helpful for urinary incontinence. Bladder volume monitoring technologies can be divided into two distinct categories of invasive and non-invasive. In invasive techniques, a catheter is directly inserted into the urethra to measure the amount of urine accurately. However, it is painful, limits the user’s ordinary movements, and may hurt the urinary tract. Current non-invasive techniques measure the volume of the bladder from the skin using different stationary or portable apparatus at health centers. Both techniques have difficulties and are not cost-effective to use for a long period. Recently, both invasive and non-invasive methods have been attempted to be produced in the form of wearable devices utilizing different sensing and communication technologies. Wearable bladder monitoring devices can be easily used by patients with no or few clinical steps, making them much more affordable than non-wearable devices. While wearable devices seem to be a highly convenient and effective solution, they suffer from few drawbacks, such as relatively low precision. Hence, a great number of studies have been conducted to address these issues. In this article, we review and discuss non-invasive and minimally invasive methods for monitoring the bladder volume. We focus on the most practical and state-of-the-art methods employed in wearable devices, classify them by engineering and medical characteristics, and investigate their specifications, architectures, and measurement algorithms. This study aims to introduce the latest advances in this field to practitioners while comparing the advantages and disadvantages of existing approaches. Our study concludes with open problems and future trends in the area of bladder monitoring and measurement systems.

Wearable bladder monitoring system

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. Also known as urinary tract.

  2. http://www.medwow.com/med/ultrasound-cardiac/vingmed/cfm-800-echoworks/22798.model-spec

  3. For more information, refer to https://training.seer.cancer.gov/anatomy/body/terminology.html

  4. https://www.ni.com/en-us/shop/labview.html

  5. D in DFree is an abbreviation for diaper.

References

  1. Abelson B, Majerus S, Sun D, Gill BC, Versi E, Damaser MS (2019) Ambulatory urodynamic monitoring: state of the art and future directions. Nat Rev Urol 16(5):291–301. https://doi.org/10.1038/s41585-019-0175-5. http://www.nature.com/articles/s41585-019-0175-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. Abrahams AC, Dendooven A, van der Veer JW, Wientjes R, Toorop RJ, Bleys RL, Hendrickx AP, van Leeuwen MS, de Lussanet QG, Verhaar MC, Stapper G, Nguyen TQ (2019) Direct comparison of the thickness of the parietal peritoneum using peritoneal biopsy and ultrasonography of the abdominal wall in patients treated with peritoneal dialysis. Perit Dial Int J Int Soc Perit Dial 39(5):455–464. https://doi.org/10.3747/pdi.2018.00108

    Article  Google Scholar 

  3. Akkus O (2012) Evaluation of skin and subcutaneous adipose tissue thickness for optimal insulin injection. J Diab Metab 03(08):3. https://doi.org/10.4172/2155-6156.1000216

  4. Al Ameen M, Liu J, Kwak K (2012) Security and privacy issues in wireless sensor networks for healthcare applications. J Med Syst 36(1):93–101. https://doi.org/10.1007/s10916-010-9449-4

    Article  PubMed  Google Scholar 

  5. Barber CB, Dobkin DP, Huhdanpaa H (1996) The auickhull algorithm for convex hulls. ACM Trans Math Softw 22(4):469–483. https://doi.org/10.1145/235815.235821

    Article  Google Scholar 

  6. Bevan C, Buntsma D, Stock A, Griffiths T, Donath S, Babl FE (2011) Assessing bladder volumes in young children prior to instrumentation: accuracy of an automated ultrasound device compared to real-time ultrasound. Acad Emerg Med 18(8):816–821. https://doi.org/10.1111/j.1553-2712.2011.01130.x

    Article  PubMed  Google Scholar 

  7. Bih LI, Ho CC, Tsai SJ, Lai YC, Chow W (1998) Bladder shape impact on the accuracy of ultrasonic estimation of bladder volume. Arch Phys Med Rehabilitation 79(12):1553–1556. https://doi.org/10.1016/S0003-9993(98)90419-1

    Article  CAS  Google Scholar 

  8. Boas DA, Culver JP, Stott JJ, Dunn AK (2002) Three dimensional monte carlo code for photon migration through complex heterogeneous media including the adult human head. Opt Express 10 (3):159–170. https://doi.org/10.1364/OE.10.000159

    Article  PubMed  Google Scholar 

  9. Brouwer TA, van den Boogaard C, van Roon EN, Kalkman CJ, Veeger N (2018) Non-invasive bladder volume measurement for the prevention of postoperative urinary retention: validation of two ultrasound devices in a clinical setting. J Clin Monit Comput 32(6):1117–1126. https://doi.org/10.1007/s10877-018-0123-6

    Article  PubMed  PubMed Central  Google Scholar 

  10. Byun SS, Kim HH, Lee E, Paick JS, Kamg W, Oh SJ (2003) Accuracy of bladder volume determinations by ultrasonography: are they accurate over entire bladder volume range? Urology 62(4):656–660. https://doi.org/10.1016/S0090-4295(03)00559-4

    Article  PubMed  Google Scholar 

  11. Cao H, Tata U, Landge V, Li A, Peng Y, Chiao J (2013) A wireless bladder volume monitoring system using a flexible capacitance-based sensor. In: 2013 IEEE Topical conference on biomedical wireless technologies, networks, and sensing systems, pp 34–36. https://doi.org/10.1109/BioWireleSS.2013.6613666

  12. Cao H, Thakar SK, Fu T, Sheth M, Oseng ML, Landge V, Seo Y, Chiao J (2011) A wireless strain sensor system for bladder volume monitoring. In: 2011 IEEE MTT-S international microwave symposium, pp 1–4. https://doi.org/10.1109/MWSYM.2011.5972653

  13. Carovac A, Smajlovic F, Junuzovic D (2011) Application of ultrasound in medicine. Acta Informatica Medica 19(3):168. https://doi.org/10.5455/aim.2011.19.168-171

    Article  PubMed  PubMed Central  Google Scholar 

  14. Christ A, Kainz W, Hahn EG, Honegger K, Zefferer M, Neufeld E, Rascher W, Janka R, Bautz W, Chen J, Kiefer B, Schmitt P, Hollenbach HP, Shen J, Oberle M, Szczerba D, Kam A, Guag JW, Kuster N (2010) The virtual family—development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys Med Biol 55(2):N23–N38. https://doi.org/10.1088/0031-9155/55/2/N01

    Article  PubMed  Google Scholar 

  15. Combes RD, Shah AB (2016) The use of in-vivo, ex-vivo, in-vitro, computational models and volunteer studies in vision research and therapy, and their contribution to the three Rs. Altern Lab Anim 44 (3):187–238. https://doi.org/10.1177/026119291604400302

    Article  PubMed  Google Scholar 

  16. Das SS (2017) Biometrics of pyramidalis muscle and its clinical importance. Journal of Clinical and Diagnostic Research. https://doi.org/10.7860/JCDR/2017/24179.9276

  17. Delpy DT, Cope M, van der Zee P, Arridge S, Wray S, Wyatt J (1988) Estimation of optical pathlength through tissue from direct time of flight measurement. Phys Med Biol 33(12):1433–1442. https://doi.org/10.1088/0031-9155/33/12/008

    Article  CAS  PubMed  Google Scholar 

  18. Derrouich S, Oyama J, Tsuyoshi H, Takashi A (2005) Ultrasound bladder scanner based on 2d concave probe. In: IEEE ultrasonics symposium, 2005. vol 3, pp 1424–1427. https://doi.org/10.1109/ULTSYM.2005.1602781

  19. Dintzis R, McBride J (2012) Anatomy, embryology, and histology. Springer, New York, pp 3–25. https://doi.org/10.1007/978-1-4614-5320-8_1

    Google Scholar 

  20. Drake RL, Vogl AW, Mitchell AWM (2020) Gray’s anatomy for students fourth edi edn

  21. Dunne E, Santorelli A, McGinley B, Leader G, O’Halloran M, Porter E (2018) Image-based classification of bladder state using electrical impedance tomography. Phys Meas 39(12):124001. https://doi.org/10.1088/1361-6579/aae6ed. https://iopscience.iop.org/article/10.1088/1361-6579/aae6ed

    Article  Google Scholar 

  22. Dunne E, Santorelli A, McGinley B, Leader G, O’Halloran M, Porter E (2018) Supervised learning classifiers for electrical impedance-based bladder state detection. Sci Rep 8(1):5363. https://doi.org/10.1038/s41598-018-23786-5. http://www.nature.com/articles/s41598-018-23786-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Fägerquist M, Fägerquist U, Steyskal H, Odën A, Blomberg SG (2002) Accuracy in estimating fetal urinary bladder volume using a modified ultrasound technique. Ultrasound Obstet Gynecol 19 (4):371–379. https://doi.org/10.1046/j.1469-0705.2002.00629.x

    Article  PubMed  Google Scholar 

  24. Fong D, Alcantar AV, Gupta P, Kurzrock E, Ghiasi S (2018) Non-invasive bladder volume sensing for neurogenic bladder dysfunction management. In: 2018 IEEE 15th International conference on wearable and implantable body sensor networks (BSN), pp 82–85. https://doi.org/10.1109/BSN.2018.8329664

  25. Fong DD, Yu X, Mao J, Saffarpour M, Gupta P, Abueshsheikh R, Alcantar AV, Kurzrock EA, Ghiasi S (2018) Restoring the sense of bladder fullness for spinal cord injury patients. Smart Health 9-10:12–22. https://doi.org/10.1016/j.smhl.2018.07.014. CHASE 2018 Special Issue

    Article  Google Scholar 

  26. Fowlkes JB, Holland CK (2000) Mechanical bioeffects from diagnostic ultrasound: AIUM consensus statements. Am Inst Ultrasound Med J Ultrasound Med 19(2):69–72. https://doi.org/10.7863/jum.2000.19.2.69

    Article  CAS  Google Scholar 

  27. Geirsson RT, Christie AD, Patel N (1982) Ultrasound volume measurements comparing a prolate ellipsoid method with a parallel planimetric area method against a known volume. J Clin Ultrasound 10(7):329–332. https://doi.org/10.1002/jcu.1870100707

    Article  CAS  PubMed  Google Scholar 

  28. Gokhale S (2007) High resolution ultrasonography of the anterior abdominal wall. Indian J Radiol Imaging 17(4):290. https://doi.org/10.4103/0971-3026.36880

    Article  Google Scholar 

  29. Gray M, Meehan J, Ward C, Langdon S, Kunkler I, Murray A, Argyle D (2018) Implantable biosensors and their contribution to the future of precision medicine. Vet J 239:21–29. https://doi.org/10.1016/j.tvjl.2018.07.011

    Article  CAS  PubMed  Google Scholar 

  30. Griffiths CJ, Murray A, Ramsden PD (1986) Accuracy and repeatability of bladder volume measurement using ultrasonic imaging. J Urol 136(4):808–812. https://doi.org/10.1016/S0022-5347(17)45086-5

    Article  CAS  PubMed  Google Scholar 

  31. Griffor ER, Greer C, Wollman DA, Burns MJ (2017) Framework for cyber-physical systems: volume 1, overview. Tech. rep., National Institute of Standards and Technology, Gaithersburg, MD. https://doi.org/10.6028/NIST.SP.1500-201

    Book  Google Scholar 

  32. Gupta P (2018) Nirs based bladder volume sensing for patients suffering with neurogenic bladder dysfunction. M.Sc, Thesis, University of California

  33. Gyampoh B, Crouch N, O’Brien P, O’Sullivan C, Cutner A (2004) Intrapartum ultrasound estimation of total bladder volume. BJOG: An Int J Obstet Gynaecol 111(2):103–108. https://doi.org/10.1046/j.1471-0528.2003.51107.x-i1

    Article  CAS  Google Scholar 

  34. Hakenberg OW, Ryall RL, Langlois SL, Marshall VR (1983) The estimation of bladder volume by sonocystography. J Urol 130(2):249–251. https://doi.org/10.1016/S0022-5347(17)51087-3

    Article  CAS  PubMed  Google Scholar 

  35. Hannah S, Brige P, Ravichandran A, Ramuz M (2019) Conformable, stretchable sensor to record bladder wall stretch. ACS Omega 4(1):1907–1915. https://doi.org/10.1021/acsomega.8b02609

    Article  CAS  Google Scholar 

  36. Harikrishnan R, Keerthini S, Varshan SV, Rahul R (2019) Iot based system design for detecting urinary bladder level. In: Inter national level conference, vol 6, pp 2017–2020

  37. Holmes JH (1967) Ultrasonic studies of the bladder. J Urol 97(4):654–663. https://doi.org/10.1016/S0022-5347(17)63094-5

    Article  CAS  PubMed  Google Scholar 

  38. Housley S, Harding C, Pickard R (2010) Urodynamic assessment of urinary incontinence. Ind J Urol 26(2):215. https://doi.org/10.4103/0970-1591.65392

    Article  Google Scholar 

  39. Huang YH, Bih LI, Chen SL, Tsai SJ, Teng CH (2004) The accuracy of ultrasonic estimation of bladder volume: a comparison of portable and stationary equipment. Arch Phys Med Rehabil 85 (1):138–141. https://doi.org/10.1016/S0003-9993(03)00271-5

    Article  PubMed  Google Scholar 

  40. Hvarness H, Skjoldbye B, Jakobsen H (2002) Urinary bladder volume measurements: comparison of three ultrasound calculation methods. Scand J Urol Nephrol 36(3):177–181. https://doi.org/10.1080/003655902320131839

    Article  CAS  PubMed  Google Scholar 

  41. Hwang JY, Byun SS, Oh SJ, Kim HC (2004) Novel algorithm for improving accuracy of ultrasound measurement of residual urine volume according to bladder shape. Urology 64(5):887–891. https://doi.org/10.1016/j.urology.2004.06.054

    Article  PubMed  Google Scholar 

  42. Ireton RC, Krieger JN, Cardenas DD, Williams-Burden B, Kelly E, Souci T, Chapman WH (1990) Bladder volume determination using a dedicated, portable ultrasound scanner. J Urol 143 (5):909–911. https://doi.org/10.1016/S0022-5347(17)40133-9

    Article  CAS  PubMed  Google Scholar 

  43. Cato J (2018) Negative effects of infrared waves. [Online]. Available: https://sciencing.com/infrared-thermometers-work-4965130.html ([Accessed: 2020-03-24])

  44. Jeyalakshmi MS, Engineering B, Of J (2018) Wearable system design for detecting urinary bladder fullness. Int J Pure Appl Math 119(15):2183–2189

    Google Scholar 

  45. Kauppinen P, Hyttinen J, Malmivuo J (2006) Sensitivity distribution visualizations of impedance tomography measurement strategies. International Journal of Bioelectromagnetism 8 VII/1 – VII/9

  46. Kim M, Lee S, Yoon I, Kook G, Jung Y, Bawazir S, Stefanini C, Lee H (2018) Polypyrrole/agarose hydrogel-based bladder volume sensor with a resistor ladder structure. Sensors 18(7):2288. https://doi.org/10.3390/s18072288

    Article  PubMed Central  CAS  Google Scholar 

  47. Kim MK, Kim H, Jung YS, Adem KMA, Bawazir SS, Stefanini C, Lee HJ (2017) Implantable bladder volume sensor based on resistor ladder network composed of conductive hydrogel composite. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 1732–1735. https://doi.org/10.1109/EMBC.2017.8037177

  48. Knight J (2012) Fundamentals of dependable computing for software engineers. https://doi.org/10.1201/b11667

  49. Kocher NJ, Damaser MS, Gill BC (2020) Advances in ambulatory urodynamics. Current Urology Reports 21 (10):41. https://doi.org/10.1007/s11934-020-00989-w. http://link.springer.com/10.1007/s11934-020-00989-w

    Article  PubMed  Google Scholar 

  50. Koomen E, Bouman E, Callewaerdt P, Vos GD, Prins MH, Anderson BJ, Marcus MAE (2008) Evaluation of a non-invasive bladder volume measurement in children. Scand J Urol Nephrol 42(5):444–448. https://doi.org/10.1080/00365590802054600

    Article  PubMed  Google Scholar 

  51. Krewer F, Morgan F, Jones E, Glavin M, O’Halloran M (2014) Development of a wearable microwave bladder monitor for the management and treatment of urinary incontinence. In: Ranney KI, Doerry A (eds) Radar Sensor Technology XVIII, p 90770X. https://doi.org/10.1117/12.2049689

  52. Kristiansen NK, Djurhuus JC, Nygaard H (2004) Design and evaluation of an ultrasound-based bladder volume monitor. Med Biol Eng Comput 42(6):762–769. https://doi.org/10.1007/BF02345209

    Article  CAS  PubMed  Google Scholar 

  53. Kuru K, Ansell D, Jones M, De Goede C, Leather P (2019) Feasibility study of intelligent autonomous determination of the bladder voiding need to treat bedwetting using ultrasound and smartphone ML techniques. Med Biol Eng Comput 57(5):1079–1097. https://doi.org/10.1007/s11517-018-1942-9. http://link.springer.com/10.1007/s11517-018-1942-9

    Article  PubMed  Google Scholar 

  54. Lancerotto L, Stecco C, Macchi V, Porzionato A, Stecco A, De Caro R (2011) Layers of the abdominal wall: anatomical investigation of subcutaneous tissue and superficial fascia. Surg Radiol Anat 33(10):835–842. https://doi.org/10.1007/s00276-010-0772-8

    Article  PubMed  Google Scholar 

  55. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

    Article  CAS  PubMed  Google Scholar 

  56. Lee DS, Kim SJ, Sohn DW, Choi B, Lee MK, Lee SJ, Kim SW (2011) Real-time bladder volume monitoring by the application of a new implantable bladder volume sensor for a small animal model. Kaohsiung J Med Sci 27(4):132–137. https://doi.org/10.1016/j.kjms.2010.12.006

    Article  PubMed  Google Scholar 

  57. Leonhardt S, Cordes A, Plewa H, Pikkemaat R, Soljanik I, Moehring K, Gerner HJ, Rupp R (2011) Electric impedance tomography for monitoring volume and size of the urinary bladder. Biomed Tech Biomed Eng 56(6):301–307. https://doi.org/10.1515/BMT.2011.022. https://www.degruyter.com/document/doi/10.1515/BMT.2011.022/html

    Article  Google Scholar 

  58. Leonhäuser D, Castelar C, Schlebusch T, Rohm M, Rupp R, Leonhardt S, Walter M, Grosse JO (2018) Evaluation of electrical impedance tomography for determination of urinary bladder volume: comparison with standard ultrasound methods in healthy volunteers. BioMed Eng OnLine 17(1):95. https://doi.org/10.1186/s12938-018-0526-0

    Article  PubMed  PubMed Central  Google Scholar 

  59. van Leuteren P, Klijn A, de Jong T, Dik P (2018) Sens-u: validation of a wearable ultrasonic bladder monitor in children during urodynamic studies. J Pediatr Urol 14(6):569.e1–569.e6. https://doi.org/10.1016/j.jpurol.2018.07.018

    Article  Google Scholar 

  60. van Leuteren P, Nieuwhof-Leppink A, Dik P (2019) Sens-u: clinical evaluation of a full-bladder notification – a pilot study. J Ped Urol 15(4):381.e1–381.e5. https://doi.org/10.1016/j.jpurol.2019.04.006

    Article  Google Scholar 

  61. van Leuteren PG, de Vries BA, de Joode-Smink GCJ, ten Haken B, de Jong TPVM, Dik P (2017) URIKA, continuous ultrasound monitoring for the detection of a full bladder in children with dysfunctional voiding: a feasibility study. Biomed Phys Eng Exp 3(1):017005. https://doi.org/10.1088/2057-1976/aa589f

    Article  Google Scholar 

  62. Li R., Gao J., Li Y., Wu J., Zhao Z., Liu Y. (2016) Preliminary study of assessing bladder urinary volume using electrical impedance tomography. J Med Biol Eng 36(1):71–79. https://doi.org/10.1007/s40846-016-0108-1. http://link.springer.com/10.1007/s40846-016-0108-1

    Article  Google Scholar 

  63. Li R, Gao J, Wang H, Jiang Q (2013) Design of a noninvasive bladder urinary volume monitoring system based on bio-impedance. Engineering 05(10):321–325. https://doi.org/10.4236/eng.2013.510B065

    Article  Google Scholar 

  64. Li Y, Peng Y, Yang X, Lu S, Gao J, Lin C, Li R (2019) Analysis of measurement electrode location in bladder urine monitoring using electrical impedance. BioMedical Eng OnLine 18(1):34. https://doi.org/10.1186/s12938-019-0651-4. https://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-019-0651-4

    Article  Google Scholar 

  65. Liang X, Xu L, Tian W, Xie Y, Sun J (2019) Effect of stimulation patterns on bladder volume measurement based on fringe effect of EIT sensors. In: 2019 IEEE international conference on imaging systems and techniques (IST), pp 1–5. IEEE. https://doi.org/10.1109/IST48021.2019.9010111. https://ieeexplore.ieee.org/document/9010111/

  66. Lu X, Soh CK, Avvari PV (2015) Lamb wave propagation in vibrating structures for effective health monitoring. In: Kundu T. (ed) Health monitoring of structural and biological systems 2015, vol 9438, pp 445–454 International Society for Optics and Photonics, SPIE. https://doi.org/10.1117/12.2083931

  67. Macnab A, Friedman B, Shadgan B, Stothers L (2012) Bladder anatomy physiology and pathophysiology: elements that suit near infrared spectroscopic evaluation of voiding dysfunction. Biomed Spectrosc Imaging 1:223–235. https://doi.org/10.3233/BSI-2012-0020

    Article  CAS  Google Scholar 

  68. Mainprize TC, Drutz HP (1989) Accuracy of total bladder volume and residual urine measurements: comparison between real-time ultrasonography and catheterization. Am J Obstet Gynecol 160(4):1013–1016. https://doi.org/10.1016/0002-9378(89)90327-X

    Article  CAS  PubMed  Google Scholar 

  69. Matsumoto M, Tsutaoka T, Yabunaka K, Handa M, Yoshida M, Nakagami G, Sanada H (2019) Development and evaluation of automated ultrasonographic detection of bladder diameter for estimation of bladder urine volume. PLOS ONE 14(9):e0219916. https://doi.org/10.1371/journal.pone.0219916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McMorrow G, Baartmans H, Bom N, Lancee C (2005) Instantaneous ultrasonic echo measurement of bladder volume with a limited number of ultrasound beams

  71. Meddings J, Rogers MAM, Krein SL, Fakih MG, Olmsted RN, Saint S (2014) Reducing unnecessary urinary catheter use and other strategies to prevent catheter-associated urinary tract infection: an integrative review. BMJ Qual Saf 23(4):277–289. https://doi.org/10.1136/bmjqs-2012-001774

    Article  PubMed  Google Scholar 

  72. Merks EJ (2009) Instantaneous ultrasonic assessment of urinary bladder volume. Cost Effectiveness and Resource Allocation - Cost Eff Resour Alloc

  73. Miller DL, Smith NB, Bailey MR, Czarnota GJ, Hynynen K, Makin IRS (2012) Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med 31(4):623–634. https://doi.org/10.7863/jum.2012.31.4.623

    Article  PubMed  PubMed Central  Google Scholar 

  74. Molavi B, Shadgan B, Macnab AJ, Dumont GA (2014) Noninvasive optical monitoring of bladder filling to capacity using a wireless near infrared spectroscopy device. IEEE Trans Biomed Circ Syst 8 (3):325–333. https://doi.org/10.1109/TBCAS.2013.2272013

    Article  Google Scholar 

  75. Nenadic I, Mynderse L, Husmann D, Mehrmohammadi M, Bayat M, Singh A, Denis M, Urban M, Alizad A, Fatemi M (2016) Noninvasive evaluation of bladder wall mechanical properties as a function of filling volume: potential application in bladder compliance assessment. PLOS ONE 11(6):e0157818. https://doi.org/10.1371/journal.pone.0157818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Nenadic IZ, Bo Qiang, Urban MW, Nabavizadeh A, Greenleaf JF, Fatemi M (2012) Measuring bladder viscoelasticity using ultrasound. In: 2012 IEEE International Ultrasonics Symposium, pp 105–108. https://doi.org/10.1109/ULTSYM.2012.0026

  77. Nenadic IZ, Qiang B, Urban MW, de Araujo Vasconcelo LH, Nabavizadeh A, Alizad A, Greenleaf JF, Fatemi M. (2013) Ultrasound bladder vibrometry method for measuring viscoelasticity of the bladder wall. Phys Med Biol 58(8):2675–2695. https://doi.org/10.1088/0031-9155/58/8/2675

    Article  PubMed  Google Scholar 

  78. Niu H, Yang S, Liu C, Yan Y, Li L, Ma F, Wang X, Pu F, Li D, Fan Y (2011) Design of an ultrasound bladder volume measurement and alarm system. In: 2011 5th International conference on bioinformatics and biomedical engineering, vol M, pp 1–4. IEEE. https://doi.org/10.1109/icbbe.2011.5781498

  79. NovioScan: SENS-U KIDS. [Online]. Available: https://novioscan.com/products/sens-u-kids/ ([Accessed: 2020-02-02])

  80. Padmapriya B, Kesavamurthy T, Thamalari Selvi M, Gayathri A (2014) An intensive review on the noninvasive methods to measure the urinary bladder volume using ultrasound images. App Mech Mater 573:803–807. https://doi.org/10.4028/www.scientific.net/AMM.573.803

    Article  Google Scholar 

  81. Palanchon P, van Loon D, Bangma C, Bom N (2004) Bladder volume measurements with a limited number of fixed ultrasound beams. Ultrasound Med Biol 30(3):289–294. https://doi.org/10.1016/j.ultrasmedbio.2003.11.009

    Article  CAS  PubMed  Google Scholar 

  82. Palla A, Rossi S, Fanucci L (2015) Bioimpedance based monitoring system for people with neurogenic dysfunction of the urinary bladder. Stud Health Technol Inf 217:892–6

    Google Scholar 

  83. Patel U, Rickards D (2010) Imaging and urodynamics of the lower urinary tract. Springer, Berlin. https://www.springer.com/gp/book/9781848828353

    Book  Google Scholar 

  84. Petrican P, Sawan M (1998) Design of a miniaturized ultrasonic bladder volume monitor and subsequent preliminary evaluation on 41 enuretic patients. IEEE Trans Rehabil Eng 6(1):66–74. https://doi.org/10.1109/86.662622

    Article  CAS  PubMed  Google Scholar 

  85. POSTON GJ, JOSEPH AEA, RIDDLE PR (1983) The accuracy of ultrasound in the measurement of changes in bladder volume. Br J Urol 55(4):361–363. https://doi.org/10.1111/j.1464-410X.1983.tb03322.x

    Article  CAS  PubMed  Google Scholar 

  86. Provost B, Sawan M (1997) Proposed new bladder volume monitoring device based on impedance measurement. Med Biol Eng Comput 35(6):691–694. https://doi.org/10.1007/BF02510979

    Article  CAS  PubMed  Google Scholar 

  87. Rise MT, Bradley WE, Frohrib DA (1979) An ultrasonic bladder-volume sensor. IEEE Trans Biomed Eng BME 26(12):709–711. https://doi.org/10.1109/TBME.1979.326464

    Article  CAS  Google Scholar 

  88. Rodas M, Amoroso L, Huerta M (2019) Estimation of emptying urinary bladder in paraplegic and elderly people based on bioimpedance, hypogastric region temperature and neural network. Springer Singapore, Singapore, pp 931–935. https://doi.org/10.1007/978-981-10-9038-7_172

    Google Scholar 

  89. Rosa BMG, Yang GZ (2020) Bladder volume monitoring using electrical impedance tomography with simultaneous multi-tone tissue stimulation and dft-based impedance calculation inside an fpga. IEEE Trans Biomed Circ Syst 14(4):775–786. https://doi.org/10.1109/TBCAS.2020.3008831

    Article  Google Scholar 

  90. Rowe J, Price N, Upadhyay V (2014) Evaluation of the BladderScan®; in estimating bladder volume in paediatric patients. J Pediatr Urol 10(1):98–102. https://doi.org/10.1016/j.jpurol.2013.06.012

    Article  PubMed  Google Scholar 

  91. Santorelli A, Dunne E, Porter E, O’Halloran M (2018) Multiclass svm for bladder volume monitoring using electrical impedance measurements. In: 2018 EMF-Med 1st world conference on biomedical applications of electromagnetic fields (EMF-Med), pp 1–2. https://doi.org/10.23919/EMF-MED.2018.8526015

  92. Schlebusch T, Nienke S, Leonhardt S, Walter M (2014) Bladder volume estimation from electrical impedance tomography. Physiol Meas 35(9):1813–1823. https://doi.org/10.1088/0967-3334/35/9/1813. https://iopscience.iop.org/article/10.1088/0967-3334/35/9/1813

    Article  CAS  PubMed  Google Scholar 

  93. Schlebusch T, Orschulik J, Malmivuo J, Leonhardt S, Leonhäuser D, Grosse J, Kowollik M, Kirschner-Hermanns R, Walter M (2014) Impedance ratio method for urine conductivity-invariant estimation of bladder volume. J Electr Bioimpedance 5(1):48–54. https://doi.org/10.5617/jeb.895. https://content.sciendo.com/view/journals/joeb/5/1/article-p48.xml

    Article  Google Scholar 

  94. Schnider P, Birner P, Gendo A, Ratheiser K, Auff E (2000) Bladder volume determination: portable 3-D versus stationary 2-D ultrasound device. Arch Phys Med Rehabil 81 (1):18–21. https://doi.org/10.1016/S0003-9993(00)90215-6

    Article  CAS  PubMed  Google Scholar 

  95. Schukat M, McCaldin D, Wang K, Schreier G, Lovell N, Marschollek M, Redmond S (2016) Unintended consequences of wearable sensor use in healthcare. Yearb Med Inform 25(01):73–86. https://doi.org/10.15265/IY-2016-025

    Article  Google Scholar 

  96. Shankar H, Pagel PS (2011) Potential adverse ultrasound-related biological effects. Anesthesiology 115(5):1109–1124. https://doi.org/10.1097/ALN.0b013e31822fd1f1

    Article  PubMed  Google Scholar 

  97. Shida K, Yagami S (2006) A non-invasive urination-desire sensing system based on four-electrodes impedance measurement method. In: IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics, pp 2975–2978. IEEE. https://doi.org/10.1109/IECON.2006.347460. http://ieeexplore.ieee.org/document/4152957/

  98. Shin SC, Moon J, Kye S, Lee K, Lee YS, Kang HG (2017) Continuous bladder volume monitoring system for wearable applications. In: 2017 39th Annual international conference of the ieee engineering in medicine and biology society (EMBC), vol M, pp 4435–4438. IEEE. https://doi.org/10.1109/EMBC.2017.8037840

  99. Stauffer F, Zhang Q, Tybrandt K, Llerena Zambrano B, Hengsteler J, Stoll A, Trüeb C, Hagander M, Sujata JM, Hoffmann F, Schuurmans Stekhoven J, Quack J, Zilly H, Goedejohann J, Schneider MP, Kessler TM, Taylor WR, Küng R, Vörös J (2018) Soft electronic strain sensor with chipless wireless readout: toward real-time monitoring of bladder volume. Adv Mater Technol 3 (6):1800031. https://doi.org/10.1002/admt.201800031

    Article  CAS  Google Scholar 

  100. Tahan N, Khademi-Kalantari K, Mohseni-Bandpei MA, Mikaili S, Baghban AA, Jaberzadeh S (2016) Measurement of superficial and deep abdominal muscle thickness: an ultrasonography study. J Physiol Anthropol 35(1):17. https://doi.org/10.1186/s40101-016-0106-6

    Article  PubMed  PubMed Central  Google Scholar 

  101. Tanaka R, Abe T (2010) Measurement of the bladder volume with a limited number of ultrasonictransducers. In: Proceedings - IEEE Ultrasonics Symposium (c). https://doi.org/10.1109/ULTSYM.2010.5935549, pp 1783–1786

  102. Triple W (2019) DFree. [Online]. Available: https://www.dfreeus.biz/ ([Accessed: 2020-02-18])

  103. Tsai SR, Hamblin MR (2017) Biological effects and medical applications of infrared radiation. J Photochem Photobiol B Biol 170:197–207. https://doi.org/10.1016/j.jphotobiol.2017.04.014

    Article  CAS  Google Scholar 

  104. VanEpps JS, Younger JG (2016) Implantable device-related infection. SHOCK 46(6):597–608. https://doi.org/10.1097/SHK.0000000000000692

    Article  PubMed  PubMed Central  Google Scholar 

  105. Verathon Inc.: BladderScan. [Online]. Available: https://www.verathon.com/bladderscan/ ([Accessed: 2020-02-19])

  106. Verghese TS, Middleton LJ, Daniels JP, Deeks JJ, Latthe PM (2017) The impact of urodynamics on treatment and outcomes in women with an overactive bladder: a longitudinal prospective follow-up study. Int Urogynecol J. https://doi.org/10.1007/s00192-017-3414-4

  107. Waltz FM, Timm GW, Bradley WE (1971) Bladder volume sensing by resistance measurement. IEEE Trans Biomed Eng BME 18(1):42–46. https://doi.org/10.1109/TBME.1971.4502788

    Article  CAS  Google Scholar 

  108. Weaver JN, Alspaugh JC, Behkam B (2010) Toward a minimally invasive bladder pressure monitoring system: model bladder for in vitro testing. In: 2010 3rd IE EE RAS & EMBS international conference on biomedical robotics and biomechatronics, pp 638–643. IEEE. https://doi.org/10.1109/BIOROB.2010.5625981

  109. Woltjer R, Suijlen M, Srinivasa P, Banerjee N, Koning J, Rijnders G (2016) Optimization of piezo-mems layout for a bladder monitor. In: 2016 IEEE international ultrasonics symposium (IUS), pp 1–4. https://doi.org/10.1109/ULTSYM.2016.7728563

  110. Zhong J, Jia S, Pu F, Niu H, Li S, Li D, Fan Y (2010) Ultrasound estimation of female bladder volume based on magnetic resonance modeling. J Urol 183(1):216–220. https://doi.org/10.1016/j.juro.2009.08.112

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Sayed Amir Hoseini (Associate Lecturer at the University of New South Wales-ADFA-Canberra, Canberra, Australia) for his diligent proofreading of this paper. We also thank Mr. Farbod Shahinfar and Mr. Mohammad Hassan Seyedmohammadi for their insightful comments on the manuscript.

Funding

The authors would like to thank the Iranian Online Smart Monitoring (Riz-Payesh) company and Iran’s National Elites Foundation (INEF) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eisa Zarepour.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasrabadi, M.Z., Tabibi, H., Salmani, M. et al. A comprehensive survey on non-invasive wearable bladder volume monitoring systems. Med Biol Eng Comput 59, 1373–1402 (2021). https://doi.org/10.1007/s11517-021-02395-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02395-x

Keywords

Navigation