Skip to main content
Log in

Deep neural network approaches for detecting gastric polyps in endoscopic images

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Gastrointestinal endoscopy is the primary method used for the diagnosis and treatment of gastric polyps. The early detection and removal of polyps is vitally important in preventing cancer development. Many studies indicate that a high workload can contribute to misdiagnosing gastric polyps, even for experienced physicians. In this study, we aimed to establish a deep learning–based computer-aided diagnosis system for automatic gastric polyp detection. A private gastric polyp dataset was generated for this purpose consisting of 2195 endoscopic images and 3031 polyp labels. Retrospective gastrointestinal endoscopy data from the Karadeniz Technical University, Farabi Hospital, were used in the study. YOLOv4, CenterNet, EfficientNet, Cross Stage ResNext50-SPP, YOLOv3, YOLOv3-SPP, Single Shot Detection, and Faster Regional CNN deep learning models were implemented and assessed to determine the most efficient model for precancerous gastric polyp detection. The dataset was split 70% and 30% for training and testing all the implemented models. YOLOv4 was determined to be the most accurate model, with an 87.95% mean average precision. We also evaluated all the deep learning models using a public gastric polyp dataset as the test data. The results show that YOLOv4 has significant potential applicability in detecting gastric polyps and can be used effectively in gastrointestinal CAD systems.

Graphical abstract

Gastric Polyp Detection Process using Deep Learning with Private Dataset

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. GLOBOCAN. Global Cancer Observatory, International Agency for Research on Cancer. World Health Organization. 2018. https://gco.iarc.fr/today/home. Accessed 10 OCTOBER 2020

  2. Billah M, Waheed S, Rahman MM (2017) An automatic gastrointestinal polyp detection system in video endoscopy using fusion of color wavelet and convolutional neural network features. Int J Biomed Imaging 2017:9545920

    Article  Google Scholar 

  3. Gotoda T (2006 Sep) Endoscopic resection of early gastric cancer: the Japanese perspective. Curr Opin Gastroenterol 22(5):561–569

    Article  Google Scholar 

  4. Katai H, Ishikawa T, Akazawa K, Isobe Y, Miyashiro I, Oda I et al (2018) Five-year survival analysis of surgically resected gastric cancer cases in Japan: a retrospective analysis of more than 100,000 patients from the nationwide registry of the Japanese Gastric Cancer Association (2001–2007). Gastric Cancer 21(1):144–154

    Article  Google Scholar 

  5. Byrne MF, Chapados N, Soudan F, Oertel C, Pérez ML, Kelly R et al (2019) Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut 68(1):94–100

    Article  Google Scholar 

  6. Ladabaum U, Fioritto A, Mitani A, Desai M, Kim JP, Rex DK et al (2013) Real-time optical biopsy of colon polyps with narrow band imaging in community practice does not yet meet key thresholds for clinical decisions. Gastroenterology 144(1):81–91

    Article  Google Scholar 

  7. Laddha M, Jindal S, Wojciechowski J (eds) (2019) Gastric polyp detection using deep convolutional neural network. Proceedings of the 2019 4th International Conference on Biomedical Imaging, Signal Processing, Nagoya Japan, 17–19 October 2019, pp 55–59. https://doi.org/10.1145/3366174.3366185

  8. Hasan MM, Islam N, Rahman MM (2020) Gastrointestinal polyp detection through a fusion of contourlet transform and neural features. J King Saud Univ - Comput Inf Sci. In Press, Corrected Proof. https://doi.org/10.1016/j.jksuci.2019.12.013

  9. Yanase J, Triantaphyllou E (2019) A systematic survey of computer-aided diagnosis in medicine: past and present developments. Expert Syst Appl 138:112821

    Article  Google Scholar 

  10. Hoogenboom SA, Bagci U, Wallace MB (2019) AI in gastroenterology. The current state of play and the potential. How will it affect our practice and when? TIGE 22(2):42–47. https://doi.org/10.1016/j.tgie.2019.150634

  11. El Hajjar A, Rey J-F (2020) Artificial intelligence in gastrointestinal endoscopy: general overview. Chin Mid J (Engl) 133(3):326–334. https://doi.org/10.1097/CM9.0000000000000623

    Article  Google Scholar 

  12. Lundervold AS, Lundervold A (2019) An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 29(2):102–127

    Article  Google Scholar 

  13. Abadir AP, Ali MF, Karnes W, Samarasena JB (2020) Artificial intelligence in gastrointestinal endoscopy. Clinical endoscopy 53(2):132

    Article  Google Scholar 

  14. Choi J, Shin K, Jung J, Bae H-J, Kim DH, Byeon J-S et al (2020) Convolutional neural network technology in endoscopic imaging: artificial intelligence for endoscopy. Clin Endosc 53(2):117

    Article  Google Scholar 

  15. Hirasawa T, Aoyama K, Tanimoto T, Ishihara S, Shichijo S, Ozawa T, Ohnishi T, Fujishiro M, Matsuo K, Fujisaki J, Tada T (2018) Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer 21:653–660

    Article  Google Scholar 

  16. Wang R, Zhang W, Nie W, Yu Y (2019) Gastric polyps detection by improved Faster R-CNN. ICCPR '19, October 23–25, 2019, Beijing, China

  17. Zhang X, Chen F, Yu T, An J, Huang Z, Liu J et al (2019) Real-time gastric polyp detection using convolutional neural networks. PloS one 14(3):e0214133

    Article  CAS  Google Scholar 

  18. Xia J, Xia T, Pan J, Gao F, Wang S, Qian Y-Y et al (2020) Use of artificial intelligence for detection of gastric lesions by magnetically controlled capsule endoscopy. Gastroint Endosc 93(1):133–139. https://doi.org/10.1016/j.gie.2020.05.027

    Article  Google Scholar 

  19. Cao C, Wang R, Yu Y, Zhang H, Yu Y, Sun C (2021) Gastric polyp detection in gastroscopic images using deep neural network. PLoS ONE 16(4):e0250632

    Article  CAS  Google Scholar 

  20. Nogueira-Rodríguez A, Domínguez-Carbajales R, López-Fernández H, Iglesias A, Cubiella J, Fdez-Riverola F, Reboiro-Jato M, Glez-Pena D (2021) Deep neural networks approaches for detecting and classifying colorectal polyps. Neurocomputing 423:721–734

    Article  Google Scholar 

  21. Sánchez-Peralta LF, Bote-Curiel L, Picon A, Sánchez-Margallo FM, Pagador JB (2020) Deep learning to find colorectal polyps in colonoscopy: a systematic literature review. Artif Intell Med 108:101923

    Article  Google Scholar 

  22. Pacal I, Karaboga D, Basturk A, Akay B, Nalbantoglu U (2020) A comprehensive review of deep learning in colon cancer. J Comput Biol Med 126:104003

    Article  Google Scholar 

  23. Bochkovskiy A, Wang C-Y, Liao H-YM (2020) YOLOv4: optimal speed and accuracy of object detection. arXiv preprint

  24. Wang C-Y, Mark Liao H-Y, Wu Y-H, Chen P-Y, Hsieh J-W, Yeh I-H, (editors) (2020) CSPNet: a new backbone that can enhance learning capability of cnn. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020, pp 1571–1580. https://doi.org/10.1109/CVPRW50498.2020.00203

  25. Duan K, Bai S, Xie L, Qi H, Huang Q, Tian Q, (eds) (2019) Centernet: keypoint triplets for object detection. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 27 Oct.–2 Nov. 2019, pp 6568–6577. https://doi.org/10.1109/ICCV.2019.00667

  26. Ren S, He K, Girshick R, Sun J, (eds) (2015) Faster r-cnn: towards real-time object detection with region proposal networks. Advances in neural information processing systems 28 (NIPS 2015), Montreal, Quebec, Canada, December 8–13, 2014

  27. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg Alexander C (2016) Ssd: Single shot multibox detector arXiv:1512.02325. https://doi.org/10.1007/978-3-319-46448-0_2

  28. Redmon J, Farhadi A (2018) YOLOv3: An incremental improvement. arXiv:1804.02767

  29. Zhang P, Zhong Y, Li X, (2019). SlimYOLOv3: Narrower, faster and better for real-time UAV applications arXiv:1907.11093. https://doi.org/10.1109/ICCVW.2019.00011

  30. Tan M, Le QV (2019) Efficientnet: rethinking model scaling for convolutional neural networks. arXiv: 1905.11946

  31. Dirschmid K, Platz-Baudin C, Stolte M (2006) Why is the hyperplastic polyp a marker for the precancerous condition of the gastric mucosa? Virchows Arch 448(1):80–84

    Article  Google Scholar 

  32. Lynch HT, Smyrk T, McGinn T, Lanspa S, Cavalieri J, Lynch J et al (1995) Attenuated familial adenomatous polyposis (AFAP) a phenotypically and genotypically distinctive variant of FAP. Cancer 76(12):2427–2433

    Article  CAS  Google Scholar 

  33. Worthley D, Phillips K, Wayte N, Schrader K, Healey S, Kaurah P et al (2012) Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS): a new autosomal dominant syndrome. Gut 61(5):774–779

    Article  CAS  Google Scholar 

  34. Vogt S, Jones N, Christian D, Engel C, Nielsen M, Kaufmann A et al (2009) Expanded extracolonic tumor spectrum in MUTYH-associated polyposis. Gastroenterology 137(6):1976–85. e10

    Article  CAS  Google Scholar 

  35. Voutilainen M, Mäntynen T, Kunnamo I et al (2003) Impact of clinical symptoms and referral volume on endoscopy for detecting. Scand J Gastroenterol 38:109–113

    Article  CAS  Google Scholar 

  36. Burt RW (2003) Gastric fundic gland polyps. Gastroenterology 125:1462–1469

    Article  Google Scholar 

  37. Borch K, Skarsgård J, Franzén L et al (2003) Benign gastric polyps: morphological and functional origin. Dig Dis Sci 48:1292–1297

    Article  CAS  Google Scholar 

  38. Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. arXiv:1611.05431

  39. Cantor G (1984) Über unendliche, lineare Punktmannigfaltigkeiten, Arbeiten zur Mengenlehre aus den Jahren 1872–1884. Springer-Verlag Wien. https://doi.org/10.1007/978-3-7091-9516-1

  40. He K, Zhang X, Ren S, Sun J (2015) Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell 37(9):1904–1916

    Article  Google Scholar 

  41. Bai Y, Yu W, Xiao T, Xu C, Yang K, Ma W-Y et al (eds) (2014) Bag-of-words based deep neural network for image retrieval. Proceedings of the 22nd ACM international conference on Multimedia, New York, NY, USA, pp 229–232. https://doi.org/10.1145/2647868.2656402

  42. Law H, Deng J (eds) (2020) Cornernet: detecting objects as paired keypoints. Int J Comput Vis 128:642–656. https://doi.org/10.1007/s11263-019-01204-1

  43. Newell A, Yang K, Deng J (2016) Stacked hourglass networks for human pose estimation. arXiv:1603.06937

  44. Lin TY, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, Zitnick CL, Dollar P (2015) Microsoft COCO: common objects in context. arXiv:1405.0312

  45. Pham MT, Kim J-M, Kim CH (2020) Intelligent fault diagnosis method using acoustic emission signals for bearings under complex working conditions. Appl Sci 10(20):7068

    Article  CAS  Google Scholar 

  46. Tan M, Chen B, Pang R, Vasudevan V, Sandler M, Howard A et al (eds) (2019) Mnasnet: platform-aware neural architecture search for mobile. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp 2820–2828

  47. Le Duy Huynh NB. A U-NET++ with pre-trained EfficientNet backbone for segmentation of diseases and artifacts in endoscopy images and videos, CEUR Workshop Proceedings 2595, 13–17

  48. Girshick R (2015) Fast R-CNN. Proceedings of the IEEE International Conference on Computer Vision 2015 International Conference on Computer Vision, ICCV 2015, 1440–1448. https://doi.org/10.1109/ICCV.2015.169

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tolga Bakırman.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants was approved by the Head of Scientific Research Ethics Committee of Farabi Hospital, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey, on 24.07.2020 with the protocol number 2020/165 and the document number 24237859–488. As this is a retrospective study formal consent is not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durak, S., Bayram, B., Bakırman, T. et al. Deep neural network approaches for detecting gastric polyps in endoscopic images. Med Biol Eng Comput 59, 1563–1574 (2021). https://doi.org/10.1007/s11517-021-02398-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02398-8

Keywords

Navigation