Skip to main content

Advertisement

Log in

Framework for classification of cancer gene expression data using Bayesian hyper-parameter optimization

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Computational classification of cancers is an important research problem. Gene expression data has 1000s of features, very few samples, and a class imbalance problem. In this paper, we have proposed a framework for the classification of cancer gene expression profiles. The framework consists of a pipeline of methods for data pre-processing, feature selection, and classification. Data pre-processing is done by standard scaling and normalization of the features. The feature selection is performed in two steps. First, recursive feature elimination (RFE) is used; then, a genetic algorithm is applied only in case RFE results in a feature subset of size more than a specific threshold. Next, is a meta-pool of diverse, individual as well as ensemble classifiers. Hyper-parameters of each member in the meta-pool are optimized using Bayesian Optimization. An algorithm is developed to select the best classifier from the meta-pool based on classification accuracy and computation time taken. We evaluated the framework on 6 publicly available microarray datasets and the PAN-Cancer RNA Sequencing dataset. We found that the classifier selected by the proposed framework produced significant improvement in classification accuracy and computation time required to predict labels for test datasets. A detailed comparison with the state-of-the-art methods shows that the proposed framework outperforms all of them.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E et al (2018) Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173(2):291–304. https://doi.org/10.1016/j.cell.2018.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. TCGA dataset https://gdc.cancer.gov/about-data/publications/pancanatlas. Accessed 12 Jul 2021

  3. Golub GTR, Slonim DK, Tamayo P, Gaasenbeek M, Huard C, Mesirov JP, Coller H, LoH M, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537

    Article  CAS  Google Scholar 

  4. Alizadeh A et al (2000) Different types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403:503–511

    Article  CAS  Google Scholar 

  5. Chiesa M, Maioli G, Colombo GI et al (2020) GARS: genetic algorithm for the identification of a Robust Subset of features in high-dimensional datasets. BMC Bioinform 21:54. https://doi.org/10.1186/s12859-020-3400-6

    Article  Google Scholar 

  6. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. IEEE Trans Knowl Data Eng 25(1):1–14

    Google Scholar 

  7. Jansi RM, Devaraj D (2019) Two-stage hybrid gene selection using mutual information and genetic algorithm for cancer data classification. J Med Syst 43:235

    Article  Google Scholar 

  8. Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F et al (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural Networks. Nat Med 7:673–679

    Article  CAS  Google Scholar 

  9. Pomeroy SL et al (2002) Prediction of central nervous system embryonal tumor outcome based on gene expression. Nature 415(6870):436–442

    Article  CAS  Google Scholar 

  10. Singh D, Febbo P, Ross K, Jackson D, Manola J, Ladd C et al (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2):203–209

    Article  CAS  Google Scholar 

  11. Fletcher S, Verma B, Jan ZM, Zhang M (2018) The optimized selection of base-classifiers for ensemble classification using a multi-objective genetic algorithm. In: Proceedings of International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro. 1–8. https://doi.org/10.1109/ijcnn.2018.8489467.

  12. Efron B (1979) Bootstrap methods: another look at the Jackknife. Ann Stat 7(1):1–26

    Article  Google Scholar 

  13. Chawla N, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357

    Article  Google Scholar 

  14. Bergstra J, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-parameter optimization. In Proceedings of Advances in Neural Information Processing Systems, NIPS 2011, 24:2546–2554

  15. Pedregosa et al (2011) Scikit-learn: machine learning in Python. JMLR 12:2825–2830

    Google Scholar 

  16. Rana M, Ahmed K (2020) Feature selection and biomedical signal classification using minimum redundancy maximum relevance and artificial neural network. Proceedings of international joint conference on computational intelligence algorithms for intelligent systems. Springer, Singapore

    Google Scholar 

  17. Nancy SG, Saranya K, Rajasekar S (2020) Neuro-fuzzy ant bee colony based feature selection for cancer classification. Springer innovations in communication and computing. Springer, Cham

    Google Scholar 

  18. Shukla AK, Tripathi D (2020) Detecting biomarkers from microarray data using distributed correlation-based gene selection. Genes & Genom 42:449–465

    Article  CAS  Google Scholar 

  19. Kourou K, Rigas G, Papaloukas C, Mitsis M, Fotiadis DI (2020) Cancer classification from time-series microarray data through regulatory Dynamic Bayesian Networks. Comput Biol Med. https://doi.org/10.1016/j.compbiomed.2019.103577

    Article  PubMed  Google Scholar 

  20. Yanhao H, Lihui X, Chuanze K, Minghui W, Qin M, Bin Y (2020) SGL-SVM: a novel method for tumor classification via support vector machine with sparse group Lasso. J Theor Biol 486:110098. https://doi.org/10.1016/j.jtbi.2019.110098

    Article  CAS  Google Scholar 

  21. Xiaohong H, Dengao L, Ping L, Li W (2020) Feature selection by recursive binary gravitational search algorithm optimization for cancer classification. Soft Comput 24(6):4407–4425

    Article  Google Scholar 

  22. Morais-Rodrigues F, Silverio-Machado R, Kato RB, Rodrigues DLN, Valdez- BJ, Fonseca V (2019) Analysis of the microarray gene expression for breast cancer progression after the application modified logistic regression. Gene. https://doi.org/10.1016/j.gene.2019.144168

    Article  PubMed  Google Scholar 

  23. Loey M, Wajeeh JM, Hazem E-B, Hamed N, Taha M, Eldeen M, Khalifa M (2020) Breast and colon cancer classification from gene expression profiles using data mining techniques. Symmetry 12:408

    Article  Google Scholar 

  24. Akhand MAH, Asaduzzaman MM, Mir HK, Hafizur Rahman MM (2019) Cancer classification from DNA microarray data using mRMR and artificial neural network. Int J Adv Comput Sci Appl 10:7

    Google Scholar 

  25. Zakariyal YA, Hisyam LM (2019) A two-stage sparse logistic regression for optimal gene selection in high-dimensional microarray data classification. Adv Data Anal Classif 13:753–771

    Article  Google Scholar 

  26. Sarah AM, Saleh AI, Labib M (2019) Gene expression cancer classification using modified K-nearest neighbors technique. BioSystems 176:41–51

    Article  Google Scholar 

  27. Russul A, Jingyu H, Azzawi H, Yong X (2019) A novel gene selection algorithm for cancer classification using microarray datasets. BMC Med Genom 12:10

    Article  Google Scholar 

  28. Mignone P, Pio G, Džeroski S et al (2020) Multi- task learning for the simultaneous reconstruction of the human and mouse gene regulatory networks. Sci Rep 10:22295. https://doi.org/10.1038/s41598-020-78033-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ziba K, Marjan N, Mohammad JR (2020) Detection and classification of breast cancer using logistic regression feature selection and GMDH classifier. J Biomed Inform 111:103591. https://doi.org/10.1016/j.jbi.2020.103591

    Article  Google Scholar 

  30. Bong-Hyun K, Kijin Y, Peter CWL (2020) Cancer classification of single-cell gene expression data by neural network. Bioinformatics 36(5):1360–1366. https://doi.org/10.1093/bioinformatics/btz772

    Article  CAS  Google Scholar 

  31. Way GP, Sanchez-Vega F, La K, Armenia J, Chatila WK, Luna A, Sander C, Cherniack AD, Mina M, Ciriello G, Schultz N, Sanchez Y, Greene CS (2018) Machine learning detects pan-cancer Ras pathway activation in the cancer genome atlas. Cell Rep 23(1):172–180. https://doi.org/10.1016/j.celrep.2018.03.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eraslan G et al (2019) Single-cell RNA-seq denoising using a deep count autoencoder. Nat Commun 10:390

    Article  CAS  Google Scholar 

  33. Dhahri H, Rahmany I, Mahmood A, Al Maghayreh E, Elkilani W (2020) Tabu search and machine-learning classification of benign and malignant proliferative breast lesions. Biomed Res Int. https://doi.org/10.1155/2020/4671349

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu X, Zhang Y, Fu C, Zhang R, Zhou F (2021) EnRank: an ensemble method to detect pulmonary hypertension biomarkers based on feature selection and machine learning models. Front Genet 12:636429. https://doi.org/10.3389/fgene.2021.636429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee K, Jeong Ho, Lee S et al (2019) CPEM: Accurate cancer type classification based on somatic alterations using an ensemble of a random forest and a deep neural network. Sci Rep 9:16927. https://doi.org/10.1038/s41598-019-53034-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang X, Shi Z, Jin M (2021) Multi-category multi-state information ensemble-based classification method for precise diagnosis of three cancers. Neural Comput & Applic. https://doi.org/10.1007/s00521-021-06211-3

    Article  Google Scholar 

  37. Ilyas QM, Ahmad M (2021) An enhanced ensemble diagnosis of cervical cancer: a pursuit of machine intelligence towards sustainable health. IEEE Access 9:12374–12388. https://doi.org/10.1109/ACCESS.2021.3049165

    Article  Google Scholar 

  38. Francesconi M, Remondini D, Neretti N et al (2008) Reconstructing networks of pathways via significance analysis of their intersections. BMC Bioinform 9:S9. https://doi.org/10.1186/1471-2105-9-S4-S9

    Article  CAS  Google Scholar 

  39. Zura K, Willie Y (2017) K-means and cluster models for cancer signatures. Biomol Detect Quantif 13:7–31

    Article  Google Scholar 

  40. Yu G, Yu X, Wang J (2017) Network-aided Bi-clustering for discovering cancer subtypes. Sci Rep 7:1046. https://doi.org/10.1038/s41598-017-01064-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leukemia Dataset https://web.stanford.edu/~hastie/CASI_files/DATA/leukemia.html. Accessed 25 Dec 2020

  42. SRBCT Dataset https://research.nhgri.nih.gov/microarray/Supplement/. Accessed 25 Dec 2020

  43. Colon Dataset http://genomics-pubs.princeton.edu/oncology/. Accessed 25 Dec 2020

  44. Microarray Data Sets ftp://stat.ethz.ch/Manuscripts/dettling. Accessed 25 Dec 2020

  45. Prostate Dataset https://leo.ugr.es/elvira/DBCRepository/ProstateCancer/ProstateCancer.zip

  46. Lymphoma Dataset https://llmpp.nih.gov/lymphoma/, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60

  47. Alon U, Barkai N, Notterman DA et al (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide array. Proc Natl Acad Sci USA 96:6745–6750

    Article  CAS  Google Scholar 

  48. Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian optimization of machine learning algorithms. In: NIPS’12: Proceedings of the 25th International Conference on Neural Information Processing Systems. 2:2951–2959

  49. Bergstra J, Yamins D, Cox DD (2013) Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In ICML’13: Proceedings of the 30th International Conference on International Conference on Machine Learning, 28:115–123

  50. Wu J, Chen X, Zhang H, Xiong L, Lei H, Deng S (2019) Hyperparameter optimization for machine learning models based on bayesian optimization. J Electron Sci Technol 17(1):26–40

    Google Scholar 

  51. Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13(1):281–305

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to the reviewers for very useful comments and suggestions which greatly improved this work and its presentation.

Funding

This research work is funded by the Department of Science and Technology (DST), Government of India, under the scheme DST ICPS 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nimrita Koul.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koul, N., Manvi, S.S. Framework for classification of cancer gene expression data using Bayesian hyper-parameter optimization. Med Biol Eng Comput 59, 2353–2371 (2021). https://doi.org/10.1007/s11517-021-02442-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02442-7

Keywords