Skip to main content

Advertisement

Log in

A review of smart sensors coupled with Internet of Things and Artificial Intelligence approach for heart failure monitoring

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Over the last decade, there has been a huge demand for health care technologies such as sensors-based prediction using digital health. With the continuous rise in the human population, these technologies showed to be potentially effective solutions to life-threatening diseases such as heart failure (HF). Besides being a potential for early death, HF has a significantly reduced quality of life (QoL). Heart failure has no cure. However, treatment can help you live a longer and more active life with fewer symptoms. Thus, it is essential to develop technological aid solutions allowing early diagnosis and consequently, effective treatment with possibly delayed mortality. Commonly, forecasts of HF are based on the generation of vast volumes of data usually collected from an individual patient by different components of the family history, physical examination, basic laboratory results, and other medical records. Though, these data are not effectively useful for predicting this failure, nevertheless, with the aid of advanced medical technology such as interconnected multi-sensory-based devices, and based on several medical history characteristics, the broad data provided machine learning algorithms to predict risk factors for heart disease of an individual is beneficial. There will be many challenges for the next decade of advancements in HF care: exploiting an increasingly growing repertoire of interconnected internal and external sensors for the benefit of patients and processing large, multimodal datasets with new Artificial Intelligence (AI) software. Various methods for predicting heart failure and, primarily the significance of invasive and non-invasive sensors along with different strategies for machine learning to predict heart failure are presented and summarized in the present study.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright © 2018, Elsevier)

Fig. 3

Copyright © 2016, Wolters Kluwer Health)

Fig. 4

Copyright © 2019, Hindawi) (CC BY 4.0)

Fig. 5

Copyright © 2020, Wiley Online Library) (CC BY 4.0)

Fig. 6

Copyright © 2020, Wiley Online Library) (CC BY 4.0)

Similar content being viewed by others

Abbreviations

ADC:

Analog to Digital Converter

AI:

Artificial Intelligence

ANN:

Artificial Neural Networks

Bp-NN:

Back propagation Neural Network

CNN:

Convolution Neural Network

CT:

Computed tomography (CT)

CVD:

Cardiovascular Disease

DT:

Decision Trees

EF:

Ejection Fraction

EG:

Electrocardiography

EHR:

Electronic Health Record

ESC:

European Society of Cardiology

GA:

Genetic Algorithms

HER:

Electronic Health Records

HF:

Heart Failure

HRV:

Heart Rate Variability

IBL:

Instance-Based Learning

IoT:

Internet of Things

K-NN:

K-Nearest Neighbours

LA:

Left Atrial

LV:

Left Ventricular

ML:

Machine Learning

NN:

Neural Networks

PCA:

Principal Component Analysis

PCA:

Principal Component Analysis

QoL:

Quality of Life

RF:

Random Forest

RL:

Rule

RNN:

Recurrent Neural Network

RV:

Right Ventricle

SVM:

Support Vector Machine

SVM:

Support Vector Machines

References  

  1. Coronel R (2001) Defining heart failure. Cardiovasc Res 50:419–422. https://doi.org/10.1016/S0008-6363(01)00284-X

    Article  CAS  PubMed  Google Scholar 

  2. Inamdar A, Inamdar A (2016) Heart failure: diagnosis, management and utilization. JCM 5:62. https://doi.org/10.3390/jcm5070062

    Article  CAS  PubMed Central  Google Scholar 

  3. Tan L-B, Williams SG, Tan DKH, Cohen-Solal A (2010) So many definitions of heart failure: are they all universally valid? A critical appraisal. Expert Rev Cardiovasc Ther 8:217–228. https://doi.org/10.1586/erc.09.187

    Article  PubMed  Google Scholar 

  4. Ponikowski P, Anker SD, AlHabib KF et al (2014) Heart failure: preventing disease and death worldwide. ESC Heart Fail 1:4–25. https://doi.org/10.1002/ehf2.12005

    Article  PubMed  Google Scholar 

  5. Karanasiou GS, Tripoliti EE, Papadopoulos TG et al (2016) Predicting adherence of patients with HF through machine learning techniques. Healthcare Technology Letters 3:165–170. https://doi.org/10.1049/htl.2016.0041

    Article  PubMed  PubMed Central  Google Scholar 

  6. Aljaaf AJ, Al-Jumeily D, Hussain AJ, Dawson T, Fergus P, Al-Jumaily M (2015) Predicting the likelihood of heart failure with a multi level risk assessment using decision tree 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE) pp 101–106. https://doi.org/10.1109/TAEECE.2015.7113608

  7. Coats AJS (2001) HEART FAILURE: what causes the symptoms of heart failure? Heart 86:574–578. https://doi.org/10.1136/heart.86.5.574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dalton K, Byrne S (2017) Role of the pharmacist in reducing healthcare costs: current insights. IPRP 6:37–46. https://doi.org/10.2147/IPRP.S108047

    Article  Google Scholar 

  9. Heo S, Lennie TA, Okoli C, Moser DK (2009) Quality of life in patients with heart failure: ask the patients. Heart Lung 38:100–108. https://doi.org/10.1016/j.hrtlng.2008.04.002

    Article  PubMed  Google Scholar 

  10. Farwati M, Riaz H, Tang WHW (2021) Digital health applications in heart failure: a critical appraisal of literature. Curr Treat Options Cardio Med 23:12. https://doi.org/10.1007/s11936-020-00885-z

    Article  Google Scholar 

  11. Hall AK, Dodd V, Harris A et al (2014) Heart failure patients’ perceptions and use of technology to manage disease symptoms. Telemedicine and e-Health 20:324–331. https://doi.org/10.1089/tmj.2013.0146

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chicco D, Jurman G (2020) Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone. BMC Med Inform Decis Mak 20:16. https://doi.org/10.1186/s12911-020-1023-5

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yan Y, Zhang J-W, Zang G-Y, Pu J (2019) The primary use of artificial intelligence in cardiovascular diseases: what kind of potential role does artificial intelligence play in future medicine? J Geriatr Cardiol 16:585–591. https://doi.org/10.11909/j.issn.1671-5411.2019.08.010

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bazoukis G, Stavrakis S, Zhou J et al (2021) Machine learning versus conventional clinical methods in guiding management of heart failure patients—a systematic review. Heart Fail Rev 26:23–34. https://doi.org/10.1007/s10741-020-10007-3

    Article  PubMed  Google Scholar 

  15. Nadar SK, Shaikh MM (2019) Biomarkers in routine heart failure clinical care. Card Fail Rev 5:50–56. https://doi.org/10.15420/cfr.2018.27.2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Desai RJ, Wang SV, Vaduganathan M et al (2020) Comparison of machine learning methods with traditional models for use of administrative claims with electronic medical records to predict heart failure outcomes. JAMA Netw Open 3:e1918962. https://doi.org/10.1001/jamanetworkopen.2019.18962

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ibrahim NE, Januzzi JL (2018) Established and emerging roles of biomarkers in heart failure. Circ Res 123:614–629. https://doi.org/10.1161/CIRCRESAHA.118.312706

    Article  CAS  PubMed  Google Scholar 

  18. Ouwerkerk W, Voors AA, Zwinderman AH (2014) Factors influencing the predictive power of models for predicting mortality and/or heart failure hospitalization in patients with heart failure. JACC: Heart Fail 2:429–436. https://doi.org/10.1016/j.jchf.2014.04.006

    Article  Google Scholar 

  19. Rahimi K, Bennett D, Conrad N et al (2014) Risk prediction in patients with heart failure. JACC: Heart Fail 2:440–446. https://doi.org/10.1016/j.jchf.2014.04.008

    Article  Google Scholar 

  20. Di Tanna GL, Wirtz H, Burrows KL, Globe G (2020) Evaluating risk prediction models for adults with heart failure: a systematic literature review. PLoS ONE 15:e0224135. https://doi.org/10.1371/journal.pone.0224135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Echouffo-Tcheugui JB, Greene SJ, Papadimitriou L et al (2015) Population risk prediction models for incident heart failure: a systematic review. Circ Heart Fail 8:438–447. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001896

    Article  PubMed  Google Scholar 

  22. Ota T, Kisslo J, von Ramm OT, Yoshikawa J (2001) Real-time, volumetric echocardiography: usefulness of volumetric scanning for the assessment of cardiac volume and function. J Cardiol 37(Suppl 1):93–101

    PubMed  Google Scholar 

  23. Amundsen BH, Ericsson M, Seland JG et al (2011) A comparison of retrospectively self-gated magnetic resonance imaging and high-frequency echocardiography for characterization of left ventricular function in mice. Lab Anim 45:31–37. https://doi.org/10.1258/la.2010.010094

    Article  CAS  PubMed  Google Scholar 

  24. Pushparajah K, Duong P, Mathur S, Babu-Narayan SV (2019) EDUCATIONAL SERIES IN CONGENITAL HEART DISEASE: cardiovascular MRI and CT in congenital heart disease. Echo Research and Practice 6:R121–R138. https://doi.org/10.1530/ERP-19-0048

    Article  PubMed Central  Google Scholar 

  25. Bonneux L, Barendregt JJ, Meeter K et al (1994) Estimating clinical morbidity due to ischemic heart disease and congestive heart failure: the future rise of heart failure. Am J Public Health 84:20–28. https://doi.org/10.2105/AJPH.84.1.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karaye KM, Sani MU (2008) Electrocardiographic abnormalities in patients with heart failure. Cardiovasc J Afr 19:22–25

    PubMed  PubMed Central  Google Scholar 

  27. Massie BM, Conway M, Rajagopalan B et al (1988) Skeletal muscle metabolism during exercise under ischemic conditions in congestive heart failure. Evidence for abnormalities unrelated to blood flow. Circulation 78:320–326. https://doi.org/10.1161/01.CIR.78.2.320

    Article  CAS  PubMed  Google Scholar 

  28. Zizola C, Schulze PC (2013) Metabolic and structural impairment of skeletal muscle in heart failure. Heart Fail Rev 18:623–630. https://doi.org/10.1007/s10741-012-9353-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosano GM, Department of Medical Sciences, IRCCS San Raffaele Pisana, Rome, Italy, Vitale C, Department of Medical Sciences, IRCCS San Raffaele Pisana, Rome, Italy (2018) Metabolic modulation of cardiac metabolism in heart failure. Card Fail Rev 4:99. https://doi.org/10.15420/cfr.2018.18.2

  30. Swan JW, Anker SD, Walton C et al (1997) Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. J Am Coll Cardiol 30:527–532. https://doi.org/10.1016/S0735-1097(97)00185-X

    Article  CAS  PubMed  Google Scholar 

  31. Packin NG, Lev-Aretz Y (2018) Learning algorithms and discrimination. Edward Elgar Publishing Limited pp 88–113. https://doi.org/10.4337/9781786439055.00014

  32. Brekke IJ, Puntervoll LH, Pedersen PB et al (2019) The value of vital sign trends in predicting and monitoring clinical deterioration: a systematic review. PLoS ONE 14:e0210875. https://doi.org/10.1371/journal.pone.0210875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fox K, Borer JS, Camm AJ et al (2007) Resting heart rate in cardiovascular disease. J Am Coll Cardiol 50:823–830. https://doi.org/10.1016/j.jacc.2007.04.079

    Article  PubMed  Google Scholar 

  34. Hafen B B, Sharma S (2021) Oxygen Saturation. StatPearls Publishing. https://www.statpearls.com/ArticleLibrary/viewarticle/26491. Accessed 28 Sep 2021

  35. Doenst T, Nguyen TD, Abel ED (2013) Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res 113:709–724. https://doi.org/10.1161/CIRCRESAHA.113.300376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fenichel GM (2009) Clinical pediatric neurology: A signs and symptoms approach. Saunders Elsevier ; Philadelphia, PA. ISBN: 9781437719741. https://www.elsevier.com/books/clinical-pediatric-neurology/9781416061854

  37. Yahaya L, Oye ND, Garba EJ (2020) A comprehensive review on heart disease prediction using data mining and machine learning techniques. American Journal of Artificial Intelligence 4:20–29

    Article  Google Scholar 

  38. Takci H (2018) Improvement of heart attack prediction by the feature selection methods. Turk J Electr Eng Comput Sci 26:1–10

    Article  Google Scholar 

  39. Kavakiotis I, Tsave O, Salifoglou A et al (2017) Machine learning and data mining methods in diabetes research. Comput Struct Biotechnol J 15:104–116. https://doi.org/10.1016/j.csbj.2016.12.005

    Article  PubMed  PubMed Central  Google Scholar 

  40. Alpaydin E (2020) Introduction to machine learning. MIT Press. ISBN: 9780262043793. https://mitpress.mit.edu/books/introduction-machine-learning-fourth-edition

  41. Johnson KW, Torres Soto J, Glicksberg BS et al (2018) Artificial Intelligence in Cardiology. J Am Coll Cardiol 71:2668–2679. https://doi.org/10.1016/j.jacc.2018.03.521

    Article  PubMed  Google Scholar 

  42. Mortazavi BJ, Downing NS, Bucholz EM et al (2016) Analysis of machine learning techniques for heart failure readmissions. Circ Cardiovasc Qual Outcomes 9:629–640. https://doi.org/10.1161/CIRCOUTCOMES.116.003039

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dinesh KG, Arumugaraj K, Santhosh KD, Mareeswari V (2018) Prediction of Cardiovascular Disease Using Machine Learning Algorithms. International Conference on Current Trends towards Converging Technologies (ICCTCT) pp 1–7. https://doi.org/10.1109/ICCTCT.2018.8550857. https://ieeexplore.ieee.org/document/8550857/authors#authors

  44. Khalaf AF, Owis MI, Yassine IA (2015) A novel technique for cardiac arrhythmia classification using spectral correlation and support vector machines. Expert Syst Appl 42:8361–8368. https://doi.org/10.1016/j.eswa.2015.06.046

    Article  Google Scholar 

  45. Louridi N, Amar M, Ouahidi BE (2019) Identification of Cardiovascular Diseases Using Machine Learning. 7th Mediterranean Congress of Telecommunications (CMT) pp 1–6. https://doi.org/10.1109/CMT.2019.8931411. https://ieeexplore.ieee.org/document/8931411

  46. Asyali MH (2003) Discrimination power of long-term heart rate variability measures. IProceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439) 1:200–203. https://doi.org/10.1109/IEMBS.2003.1279568. https://ieeexplore.ieee.org/document/1279568/authors#authors

  47. Liu G, Wang L, Wang Q et al (2014) A new approach to detect congestive heart failure using short-term heart rate variability measures. PLoS ONE 9:e93399. https://doi.org/10.1371/journal.pone.0093399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guidi G, Pettenati MC, Melillo P, Iadanza E (2014) A machine learning system to improve heart failure patient assistance. IEEE J Biomed Health Inform 18:1750–1756. https://doi.org/10.1109/JBHI.2014.2337752

    Article  PubMed  Google Scholar 

  49. Chaki D, Das A, Zaber M (2015) A comparison of three discrete methods for classification of heart disease data. Bangladesh J Sci Ind Res 50:293–296. https://doi.org/10.3329/bjsir.v50i4.25839

    Article  Google Scholar 

  50. Subhadra K, Vikas B (2019) Neural network based intelligent system for predicting heart disease. International Journal of Innovative Technology and Exploring Engineering 8:484–487

    Google Scholar 

  51. Weng SF, Reps J, Kai J et al (2017) Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS ONE 12:e0174944. https://doi.org/10.1371/journal.pone.0174944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Narain R, Saxena S, Goyal AK (2016) Cardiovascular risk prediction: a comparative study of Framingham and quantum neural network based approach. Patient Prefer Adherence 10:1259–1270. https://doi.org/10.2147/PPA.S108203

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kwon J, Kim K-H, Jeon K-H et al (2019) Artificial intelligence algorithm for predicting mortality of patients with acute heart failure. PLoS ONE 14:e0219302. https://doi.org/10.1371/journal.pone.0219302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Romiti S, Vinciguerra M, Saade W et al (2020) Artificial Intelligence (AI) and cardiovascular diseases: an unexpected alliance. Cardiol Res Pract 2020:1–8. https://doi.org/10.1155/2020/4972346

    Article  Google Scholar 

  55. Larburu N, Artetxe A, Escolar V et al (2018) Artificial Intelligence to prevent mobile heart failure patients decompensation in real time: monitoring-based predictive model. Mob Inf Syst 2018:1–11. https://doi.org/10.1155/2018/1546210

    Article  Google Scholar 

  56. Krittanawong C, Zhang H, Wang Z et al (2017) Artificial Intelligence in precision cardiovascular medicine. J Am Coll Cardiol 69:2657–2664. https://doi.org/10.1016/j.jacc.2017.03.571

    Article  PubMed  Google Scholar 

  57. Kagiyama N, Shrestha S, Farjo PD, Sengupta PP (2019) Artificial Intelligence: practical primer for clinical research in cardiovascular disease. J Am Heart Assoc 8:e012788. https://doi.org/10.1161/JAHA.119.012788

  58. Rich JD, Burns J, Freed BH, Maurer MS, Burkhoff D, Shah SJ (2018) Meta‐Analysis Global Group in Chronic (MAGGIC) Heart Failure Risk Score: validation of a simple tool for the prediction of morbidity and mortality in heart failure with preserved ejection fraction. J Am Heart Assoc 7:e009594. https://doi.org/10.1161/JAHA.118.009594

  59. Dorado-Díaz PI, Sampedro-Gómez J, Vicente-Palacios V, Sánchez PL (2019) Applications of Artificial Intelligence in cardiology. The future is already here. Revista Española de Cardiología (English Edition) 72:1065–1075. https://doi.org/10.1016/j.rec.2019.05.014

    Article  Google Scholar 

  60. Noorbakhsh-Sabet N, Zand R, Zhang Y, Abedi V (2019) Artificial Intelligence transforms the future of health care. Am J Med 132:795–801. https://doi.org/10.1016/j.amjmed.2019.01.017

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lopez-Jimenez F, Attia Z, Arruda-Olson AM et al (2020) Artificial Intelligence in cardiology: present and future. Mayo Clin Proc 95:1015–1039. https://doi.org/10.1016/j.mayocp.2020.01.038

    Article  PubMed  Google Scholar 

  62. Mouridsen K, Thurner P, Zaharchuk G (2020) Artificial Intelligence Applications in stroke. Stroke 51:2573–2579. https://doi.org/10.1161/STROKEAHA.119.027479

    Article  PubMed  Google Scholar 

  63. Ng K, Steinhubl SR, deFilippi C et al (2016) Early detection of heart failure using electronic health records: practical implications for time before diagnosis, data diversity, data quantity, and data density. Circ Cardiovasc Qual Outcomes 9:649–658. https://doi.org/10.1161/CIRCOUTCOMES.116.002797

    Article  PubMed  PubMed Central  Google Scholar 

  64. Merchant FM, Dec GW, Singh JP (2010) Implantable sensors for heart failure. Circ Arrhythm Electrophysiol 3:657–667. https://doi.org/10.1161/CIRCEP.110.959502

    Article  PubMed  Google Scholar 

  65. Inan OT, Pouyan MB, Javaid AQ et al (2018) Novel wearable seismocardiography and machine learning algorithms can assess clinical status of heart failure patients. Circ Heart Fail 11:e004313. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004313

  66. Desai AS, Stevenson LW (2012) Rehospitalization for heart failure: predict or prevent? Circulation 126:501–506. https://doi.org/10.1161/CIRCULATIONAHA.112.125435

    Article  PubMed  Google Scholar 

  67. DeVore AD, Wosik J, Hernandez AF (2019) The future of wearables in heart failure patients. JACC: Heart Fail 7:922–932. https://doi.org/10.1016/j.jchf.2019.08.008

    Article  Google Scholar 

  68. Reynolds DW, Bartelt N, Taepke R, Bennett TD (1995) Measurement of pulmonary artery diastolic pressure from the right ventricle. J Am Coll Cardiol 25:1176–1182. https://doi.org/10.1016/0735-1097(94)00510-W

    Article  CAS  PubMed  Google Scholar 

  69. Ritzema J, Troughton R, Melton I et al (2010) Physician-directed patient self-management of left atrial pressure in advanced chronic heart failure. Circulation 121:1086–1095. https://doi.org/10.1161/CIRCULATIONAHA.108.800490

    Article  PubMed  Google Scholar 

  70. Wang H, Li Y, Zhao K, Chen S, Wang Q, Lin B, Nie Z, Yao S (2017) G-quadruplex-based fluorometric biosensor for label-free and homogenous detection of protein acetylation-related enzymes activities. Biosens Bioelectron 91:400–407

    Article  CAS  Google Scholar 

  71. Wang R, Chon H, Lee S, Ko J, Hwang J, Choi N, Cheng Z, Wang X, Choo J (2017) Biomedical applications of surface-enhanced Raman scattering spectroscopy. In: Laane J (ed) Frontiers and advances in molecular spectroscopy. Elsevier, New York, pp 307–323

    Google Scholar 

  72. Shukla P (2018) Futuristic protein engineering: developments and avenues. Curr Protein Pept Sci 19(1):3–4

    CAS  PubMed  Google Scholar 

  73. Sarangadharan I, Regmi A, Chen YW, Hsu CP, Chen PC, Chang WH, Lee GY, Chyi JI, Shiesh SC, Lee GB, Wang YL (2018) High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN high electron mobility transistor (HEMT) biosensors. Biosens Bioelectron 100:282–289

    Article  CAS  Google Scholar 

  74. Fathil MF, Arshad MM, Ruslinda AR, Gopinath SC, Adzhri R, Hashim U, Lam HY (2017) Substrate-gate coupling in ZnO-FET biosensor for cardiac troponin I detection. Sens Actuators B Chem 242:1142–1154

    Article  CAS  Google Scholar 

  75. Ohlsson A (2001) Continuous ambulatory monitoring of absolute right ventricular pressure and mixed venous oxygen saturation in patients with heart failure using an implantable haemodynamic monitor: results of a 1-year multicentre feasibility study. Eur Heart J 22:942–954. https://doi.org/10.1053/euhj.2000.2419

    Article  CAS  PubMed  Google Scholar 

  76. Kjellström B, Linde C, Bennett T et al (2004) Six years follow-up of an implanted SvO 2 sensor in the right ventricle. Eur J Heart Fail 6:627–634. https://doi.org/10.1016/j.ejheart.2003.12.021

    Article  PubMed  Google Scholar 

  77. Kadhiresan VA, Pastore J, Auricchio A et al (2002) A novel method—the activity log index—for monitoring physical activity of patients with heart failure. Am J Cardiol 89:1435–1437. https://doi.org/10.1016/S0002-9149(02)02364-0

    Article  PubMed  Google Scholar 

  78. Bonaduce D, Petretta M, Marciano F et al (1999) Independent and incremental prognostic value of heart rate variability in patients with chronic heart failure. Am Heart J 138:273–284. https://doi.org/10.1016/S0002-8703(99)70112-2

    Article  CAS  PubMed  Google Scholar 

  79. Shasha Liu P, Tse H-F (2013) Implantable sensors for heart failure monitoring. Journal of Arrhythmia 29:314–319. https://doi.org/10.1016/j.joa.2013.06.003

    Article  Google Scholar 

  80. Page E, Cazeau S, Ritter P et al (2007) Physiological approach to monitor patients in congestive heart failure: application of a new implantable device-based system to monitor daily life activity and ventilation. Europace 9:687–693. https://doi.org/10.1093/europace/eum066

    Article  PubMed  Google Scholar 

  81. Sana F et al (2020) Wearable devices for ambulatory cardiac monitoring. J Am Coll Cardiol 75:1582–1592

    Article  Google Scholar 

  82. Digiglio P, Li R, Wang W, Pan T (2014) Microflotronic arterial tonometry for continuous wearable noninvasive hemodynamic monitoring. Ann Biomed Eng 42:2278–2288

    Article  Google Scholar 

  83. Suh M, Chen C-A, Woodbridge J et al (2011) A remote patient monitoring system for congestive heart failure. J Med Syst 35:1165–1179. https://doi.org/10.1007/s10916-011-9733-y

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ten Eyck L, MacLeod S, Hawkins K et al (2019) The impact of a heart failure management program in a Medicare advantage population. Popul Health Manag 22:153–161. https://doi.org/10.1089/pop.2018.0072

    Article  PubMed  Google Scholar 

  85. Conraads VM, Spruit MA, Braunschweig F et al (2014) Physical activity measured with implanted devices predicts patient outcome in chronic heart failure. Circ Heart Fail 7:279–287. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000883

    Article  PubMed  Google Scholar 

  86. Corder K, Brage S, Ekelund U (2007) Accelerometers and pedometers: methodology and clinical application. Curr Opin Clin Nutr Metab Care 10:597–603. https://doi.org/10.1097/MCO.0b013e328285d883

    Article  PubMed  Google Scholar 

  87. Pivetta E, Goffi A, Lupia E et al (2015) Lung ultrasound-implemented diagnosis of acute decompensated heart failure in the ED: a SIMEU multicenter study. Chest 148:202–210. https://doi.org/10.1378/chest.14-2608

    Article  PubMed  Google Scholar 

  88. Majumder AJA, ElSaadany YA, Young R, Ucci DR (2019) An energy efficient wearable smart IoT system to predict cardiac arrest. Advances in Human-Computer Interaction 2019:1–21. https://doi.org/10.1155/2019/1507465

    Article  Google Scholar 

  89. Bui AL, Fonarow GC (2012) Home monitoring for heart failure management. J Am Coll Cardiol 59:97–104. https://doi.org/10.1016/j.jacc.2011.09.044

    Article  PubMed  PubMed Central  Google Scholar 

  90. Cleland JGF, Louis AA, Rigby AS et al (2005) Noninvasive home telemonitoring for patients with heart failure at high risk of recurrent admission and death. J Am Coll Cardiol 45:1654–1664. https://doi.org/10.1016/j.jacc.2005.01.050

    Article  PubMed  Google Scholar 

  91. Chaudhry SI, Mattera JA, Curtis JP et al (2010) Telemonitoring in patients with heart failure. N Engl J Med 363:2301–2309. https://doi.org/10.1056/NEJMoa1010029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ong MK, Romano PS, Edgington S et al (2016) Effectiveness of remote patient monitoring after discharge of hospitalized patients with heart failure: the Better Effectiveness After Transition-Heart Failure (BEAT-HF) randomized clinical trial. JAMA Intern Med 176:310. https://doi.org/10.1001/jamainternmed.2015.7712

    Article  PubMed  PubMed Central  Google Scholar 

  93. Krum H, Forbes A, Yallop J et al (2013) Telephone support to rural and remote patients with heart failure: the Chronic Heart Failure Assessment by Telephone (CHAT) study. Cardiovasc Ther 31:230–237. https://doi.org/10.1111/1755-5922.12009

    Article  PubMed  Google Scholar 

  94. Koehler F, Koehler K, Deckwart O et al (2018) Efficacy of telemedical interventional management in patients with heart failure (TIM-HF2): a randomised, controlled, parallel-group, unmasked trial. The Lancet 392:1047–1057. https://doi.org/10.1016/S0140-6736(18)31880-4

    Article  Google Scholar 

  95. Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37:2129–2200. https://doi.org/10.1093/eurheartj/ehw128

    Article  PubMed  Google Scholar 

  96. Taranto-Vera G, Galindo-Villardón P, Merchán-Sánchez-Jara J et al (2021) Algorithms and software for data mining and machine learning: a critical comparative view from a systematic review of the literature. J Supercomput. https://doi.org/10.1007/s11227-021-03708-5

    Article  Google Scholar 

  97. Ha N, Xu K, Ren G et al (2020) Machine learning-enabled smart sensor systems. Advanced Intelligent Systems 2:2000063. https://doi.org/10.1002/aisy.202000063

    Article  Google Scholar 

  98. Ortiz J, Ghefter CGM, Silva CES, Sabbatini RME (1995) One-year mortality prognosis in heart failure: a neural network approach based on echocardiographic data. J Am Coll Cardiol 26:1586–1593. https://doi.org/10.1016/0735-1097(95)00385-1

    Article  CAS  PubMed  Google Scholar 

  99. Atienza F, Martinez-Alzamora N, De Velasco JA, Dreiseitl S, Ohno-Machado L (2000) Risk stratification in heart failure using artificial neural networks. Proc AMIA Symp pp 32–36.

  100. Dreiseitl S, Ohno-Machado L (2002) Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform 35:352–359. https://doi.org/10.1016/S1532-0464(03)00034-0

    Article  PubMed  Google Scholar 

  101. Wang J, Hou T, Xu X (2006) Chemometrics and intelligent laboratory systems. Chemom Intell Lab Syst 82:59–65

    Article  Google Scholar 

  102. Farhat NH (1992) Photonic neural networks and learning machines. IEEE Expert 7:63–72. https://doi.org/10.1109/64.163674

    Article  Google Scholar 

  103. Drucker H, Burges CJ, Kaufman L et al (1997) Support vector regression machines. Adv Neural Inf Process Syst 9:155–161

    Google Scholar 

  104. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees (1st ed.). Routledge. https://doi.org/10.1201/9781315139470

  105. Lindgreen A (2004) Corruption and unethical behavior: report on a set of Danish guidelines. J Bus Ethics 51:31–39. https://doi.org/10.1023/B:BUSI.0000032388.68389.60

    Article  Google Scholar 

  106. Gholamrezaei M, Ghorbanian K (2007) Rotated General Regression Neural Network. International Joint Conference on Neural Networks pp 1959–1964. https://doi.org/10.1109/IJCNN.2007.4371258. https://ieeexplore.ieee.org/document/4371258

  107. Lipton ZC, Berkowitz J, Elkan C (2015) A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:150600019

  108. Schroff F, Kalenichenko D, Philbin J (2015) Facenet: a unified embedding for face recognition and clustering. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp 815–823. https://doi.org/10.1109/CVPR.2015.7298682. https://ieeexplore.ieee.org/document/7298682/authors#authors

  109. Geng Q, Zhou Z, Cao X (2018) Survey of recent progress in semantic image segmentation with CNNs. Sci China Inf Sci 61:051101. https://doi.org/10.1007/s11432-017-9189-6

    Article  Google Scholar 

  110. Gonzalez TF (2007) Handbook of approximation algorithms and metaheuristics (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781420010749

  111. Quer G, Arnaout R, Henne M, Arnaout R (2021) Machine learning and the future of cardiovascular care. J Am Coll Cardiol 77:300–313. https://doi.org/10.1016/j.jacc.2020.11.030

    Article  PubMed  Google Scholar 

  112. Dargan S, Kumar M, Ayyagari MR, Kumar G (2020) A survey of deep learning and its applications: a new paradigm to machine learning. Arch Computat Methods Eng 27:1071–1092. https://doi.org/10.1007/s11831-019-09344-w

    Article  Google Scholar 

Download references

Funding

This publication was supported by Qatar University Internal Grant No. IRCC-2020–013 and Sultan Qaboos University through Grant # CL/SQU-QU/ENG/20/01, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hassen M. Ouakad or Kishor Kumar Sadasivuni.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Muni Raj Maurya and Najam US Sahar Riyaz contributed equally to this work as first authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, M.R., Riyaz, N.U.S.S., Reddy, M.S.B. et al. A review of smart sensors coupled with Internet of Things and Artificial Intelligence approach for heart failure monitoring. Med Biol Eng Comput 59, 2185–2203 (2021). https://doi.org/10.1007/s11517-021-02447-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02447-2

Keywords

Navigation