Skip to main content

Advertisement

Log in

InSiNet: a deep convolutional approach to skin cancer detection and segmentation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Cancer is among the common causes of death around the world. Skin cancer is one of the most lethal types of cancer. Early diagnosis and treatment are vital in skin cancer. In addition to traditional methods, method such as deep learning is frequently used to diagnose and classify the disease. Expert experience plays a major role in diagnosing skin cancer. Therefore, for more reliable results in the diagnosis of skin lesions, deep learning algorithms can help in the correct diagnosis. In this study, we propose InSiNet, a deep learning-based convolutional neural network to detect benign and malignant lesions. The performance of the method is tested on International Skin Imaging Collaboration HAM10000 images (ISIC 2018), ISIC 2019, and ISIC 2020, under the same conditions. The computation time and accuracy comparison analysis was performed between the proposed algorithm and other machine learning techniques (GoogleNet, DenseNet-201, ResNet152V2, EfficientNetB0, RBF-support vector machine, logistic regression, and random forest). The results show that the developed InSiNet architecture outperforms the other methods achieving an accuracy of 94.59%, 91.89%, and 90.54% in ISIC 2018, 2019, and 2020 datasets, respectively. Since the deep learning algorithms eliminate the human factor during diagnosis, they can give reliable results in addition to traditional methods.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. WHO, Cancer statistics according to the World Health Organization. https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 13 January 2021

  2. Bajpai S, Tiwary SK, Sonker M et al (2021) Recent advances in nanoparticle-based cancer treatment: a review. ACS Appl Nano Mater. https://doi.org/10.1021/acsanm.1c00779

    Article  Google Scholar 

  3. Mansouri V, Beheshtizadeh N, Gharibshahian M, Sabouri L, Varzandeh M, Rezaei N (2021) Recent advances in regenerative medicine strategies for cancer treatment. Biomed Pharmacother 141:111875. https://doi.org/10.1016/j.biopha.2021.111875

    Article  CAS  PubMed  Google Scholar 

  4. Urruticoechea A, Alemany R, Balart J, Villanueva A, Vinals F, Capella G (2010) Recent advances in cancer therapy: an overview. Curr Pharm Des 16(1):3–10. https://doi.org/10.2174/138161210789941847

    Article  CAS  PubMed  Google Scholar 

  5. Heller N, Bussmann E, Shah A, Dean J, Papanikolopoulos N (2018) Computer aided diagnosis of skin lesions from morphological features, Technical Report, 18-014. https://hdl.handle.net/11299/216030. Accessed 5 Mar 2021

  6. Garg R, Maheshwari S, Shukla A (2021) Decision support system for detection and classification of skin cancer using CNN. In: Sharma MK, Dhaka VS, Perumal T, Dey N, Tavares JMRS (eds) Innovations in computational intelligence and computer vision Advances in Intelligent Systems and Computing, vol 1189. Springer, Singapore. https://doi.org/10.1007/978-981-15-6067-5_65

    Chapter  Google Scholar 

  7. Cassano R, Cuconato M, Calviello G, Serini S, Trombino S (2021) Recent advances in nanotechnology for the treatment of melanoma. Molecules 26(4):785. https://doi.org/10.3390/molecules26040785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kassem MA, Hosny KM, Fouad MM (2020) Skin lesions classification into eight classes for ISIC 2019 using deep convolutional neural network and transfer learning. IEEE Access 8:114822–114832. https://doi.org/10.1109/ACCESS.2020.3003890

    Article  Google Scholar 

  9. Cevik E, Zengin K (2019) Classification of skin lesions in dermatoscopic images with deep convolution network, Eur J Sci Technol:309-318. https://doi.org/10.31590/ejosat.638247

  10. Wei L, Ding K, Hu H (2020) Automatic skin cancer detection in dermoscopy images based on ensemble lightweight deep learning network. IEEE Access 8:99633–99647. https://doi.org/10.1109/ACCESS.2020.2997710

    Article  Google Scholar 

  11. Chaturvedi SS, Gupta K, Prasad PS (2020) Skin lesion analyser: an efficient seven-way multi-class skin cancer classification using mobilenet. In: International Conference on Advanced Machine Learning Technologies and Applications. pp 165-176. https://doi.org/10.1007/978-981-15-3383-9_15

  12. Sreelatha T, Subramanyam MV, Prasad MG (2019) Early detection of skin cancer using melanoma segmentation technique. J Med Syst 43(7):1–7. https://doi.org/10.1007/s10916-019-1334-1

    Article  Google Scholar 

  13. Tschandl P, Rinner C, Apalla Z et al (2020) Human–computer collaboration for skin cancer recognition. Nat Med 26(8):1229–1234. https://doi.org/10.1038/s41591-020-0942-0

    Article  CAS  PubMed  Google Scholar 

  14. Pop TD, Diaconeasa Z (2021) Recent advances in phenolic metabolites and skin cancer. Int J Mol Sci 22(18):9707. https://doi.org/10.3390/ijms22189707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khan NH, Mir M, Qian L et al (2021) Skin cancer biology and barriers to treatment: recent applications of polymeric micro/nanostructures. J Adv Res. https://doi.org/10.1016/j.jare.2021.06.014

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yap MH, Goyal M, Osman F et al (2018) End-to-end breast ultrasound lesions recognition with a deep learning approach. In: Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging. vol. 10578. International Society for Optics and Photonics. p 1057819. https://doi.org/10.1117/12.2293498

  17. Havaei M, Davy A, Warde-Farley D et al (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31. https://doi.org/10.1016/j.media.2016.05.004

    Article  Google Scholar 

  18. Wei JW, Tafe LJ, Linnik YA, Vaickus LJ, Tomita N, Hassanpour S (2019) Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks. Sci Rep 9:3358. https://doi.org/10.1038/s41598-019-40041-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goyal M, Knackstedt T, Yan S, Hassanpour S (2020) Artificial intelligence-based image classification for diagnosis of skin cancer: challenges and opportunities. Comput Biol Med:104065.https://doi.org/10.1016/j.compbiomed.2020.104065

  20. Milletari F, Ahmadi SA, Kroll C et al (2017) Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound. Comput Vis Image Underst 164:92–102. https://doi.org/10.1016/j.cviu.2017.04.002

    Article  Google Scholar 

  21. Chmelik J, Jakubicek R, Walek P et al (2018) Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data. Med Image Anal 49:76–88. https://doi.org/10.1016/j.media.2018.07.008

    Article  PubMed  Google Scholar 

  22. Lucius M, De All J, De All JA et al (2020) Deep neural frameworks improve the accuracy of general practitioners in the classification of pigmented skin lesions. Diagnostics 10(11):969. https://doi.org/10.3390/diagnostics10110969

    Article  PubMed Central  Google Scholar 

  23. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (eds) Medical image computing and computer-assisted intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, vol 9351. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Codella N, Rotemberg V, Tschandl P et al (2019) Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (isic). arXiv preprint arXiv:1902.03368

  25. Tschandl P, Rosendahl C, Kittler H (2018) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data 5:180161. https://doi.org/10.1038/sdata.2018.161

    Article  PubMed  PubMed Central  Google Scholar 

  26. Combalia M, Codella NC, Rotemberg V et al (2019) BCN20000: dermoscopic lesions in the wild. arXiv preprint arXiv:1908.02288

  27. Rotemberg V, Kurtansky N, Betz-Stablein B et al (2021) A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Sci Data 8:34. https://doi.org/10.1038/s41597-021-00815-z

    Article  PubMed  PubMed Central  Google Scholar 

  28. Open Source Computer Vision. https://docs.opencv.org/3.4/index.html. Accessed 15 January 2021

  29. Lu CT, Wang LL, Shen JH, Lin JA (2021) Image enhancement using deep-learning fully connected neural network mean filter. J Supercomput 77(3):3144–3164. https://doi.org/10.1007/s11227-020-03389-6

    Article  Google Scholar 

  30. Chan S, Reddy V, Myers B et al (2020) Machine learning in dermatology: current applications, opportunities, and limitations. Dermatol Ther (Heidelb) 10:365–386. https://doi.org/10.1007/s13555-020-00372-0

    Article  Google Scholar 

  31. Al-Masni MA, Kim DH, Kim TS (2020) Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Comput Methods Programs Biomed 190:105351. https://doi.org/10.1016/j.cmpb.2020.105351

    Article  PubMed  Google Scholar 

  32. Hekler A, Utikal JS, Enk AH et al (2019) Superior skin cancer classification by the combination of human and artificial intelligence. Eur J Cancer 120:114–121. https://doi.org/10.1016/j.ejca.2019.07.019

    Article  PubMed  Google Scholar 

  33. Liu L, Mou L, Zhu XX, Mandal M (2020) Automatic skin lesion classification based on mid-level feature learning. Comput Med Imaging Graph 84:101765. https://doi.org/10.1016/j.compmedimag.2020.101765

    Article  PubMed  Google Scholar 

  34. Pacheco AG, Krohling RA (2020) The impact of patient clinical information on automated skin cancer detection. Comput Biol Med 116:103545. https://doi.org/10.1016/j.compbiomed.2019.103545

    Article  PubMed  Google Scholar 

  35. Fujisawa Y, Inoue S, Nakamura Y (2019) The possibility of deep learning-based, computer-aided skin tumor classifiers. Front Med 6:191. https://doi.org/10.3389/fmed.2019.00191

    Article  Google Scholar 

  36. Pillay V, Hirasen D, Viriri S, Gwetu MV (2020) Macroscopic skin lesion segmentation using GrabCut. In International conference on computational collective intelligence. pp 528-539. https://doi.org/10.1007/978-3-030-63007-2_41

  37. Xu J, Mcpartlon M, Li J (2021) Improved protein structure prediction by deep learning irrespective of co-evolution information. Nat Mach Intell:1–9.https://doi.org/10.1038/s42256-021-00348-5

  38. Bressem KK, Adams LC, Erxleben C, Hamm B, Niehues SM, Vahldiek JL (2020) Comparing different deep learning architectures for classification of chest radiographs. Sci Rep 10(1):1–16. https://doi.org/10.1038/s41598-020-70479-z

    Article  CAS  Google Scholar 

  39. Al-antari MA, Hua CH, Bang J, Lee S (2021) Fast deep learning computer-aided diagnosis of COVID-19 based on digital chest x-ray images. Appl Intell 51(5):2890–2907. https://doi.org/10.1007/s10489-020-02076-6

    Article  Google Scholar 

  40. An G, Akiba M, Omodaka K, Nakazawa T, Yokota H (2021) Hierarchical deep learning models using transfer learning for disease detection and classification based on small number of medical images. Sci Rep 11(1):1–9. https://doi.org/10.1038/s41598-021-83503-7

    Article  CAS  Google Scholar 

  41. Kim YG, Kim S, Cho CE et al (2020) Effectiveness of transfer learning for enhancing tumor classification with a convolutional neural network on frozen sections. Sci Rep 10(1):1–9. https://doi.org/10.1038/s41598-020-78129-0

    Article  CAS  Google Scholar 

  42. Wu TC, Wang X, Li L, Bu Y, Umulis DM (2021) Automatic wavelet-based 3D nuclei segmentation and analysis for multicellular embryo quantification. Sci Rep 11(1):1–13. https://doi.org/10.1038/s41598-021-88966-2

    Article  CAS  Google Scholar 

  43. Lagree A, Mohebpour M, Meti N et al (2021) A review and comparison of breast tumor cell nuclei segmentation performances using deep convolutional neural networks. Sci Rep 11(1):1–11. https://doi.org/10.1038/s41598-021-87496-1

    Article  CAS  Google Scholar 

  44. Pintelas E, Liaskos M, Livieris IE, Kotsiantis S, Pintelas P (2021) A novel explainable image classification framework: case study on skin cancer and plant disease prediction. Neural Comput Appl:1–19.https://doi.org/10.1007/s00521-021-06141-0

  45. Marosán-Vilimszky P, Szalai K, Horváth A et al (2021) Automated skin lesion classification on ultrasound images. Diagnostics 11(7):1207. https://doi.org/10.3390/diagnostics11071207

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hameed SS, Hassan WH, Latiff LA, Muhammadsharif FF (2021) A comparative study of nature-inspired metaheuristic algorithms using a three-phase hybrid approach for gene selection and classification in high-dimensional cancer datasets. Soft Comput:1–19.https://doi.org/10.1007/s00500-021-05726-0

  47. e Silva RHL, Machado AMC (2021) Automatic measurement of pressure ulcers using support vector machines and GrabCut. Comput Methods Programs Biomed 200:105867. https://doi.org/10.1016/j.cmpb.2020.105867

    Article  Google Scholar 

  48. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna, Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 2818-2826. https://doi.org/10.1109/CVPR.2016.308.

  49. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017). Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 4700-4708. https://doi.org/10.1109/CVPR.2017.243

  50. He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. In: Leibe B, Matas J, Sebe N, Welling M (eds) Computer vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9908. Springer, Cham. https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  51. Tan M, Le Q (2019) EfficientNet: rethinking model scaling for convolutional neural networks. Proceedings of the 36th International Conference on Machine Learning. In: Proceedings of Machine Learning Research 97:6105-6114 Available from http://proceedings.mlr.press/v97/tan19a.html

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1 Details of the compared classifiers

Appendix 1 Details of the compared classifiers

Table 10 Detailed structure of the proposed InSiNet + FCC
Table 11 Hyperparameters of machine learning algorithms
Table 12 Hyperparameters of deep learning algorithms
Table 13 Loss, accuracy, validation loss and validation accuracy values of the models
Table 14 Loss, accuracy, validation loss and validation accuracy values of the MLP
Fig. 17
figure 17

Architecture of the proposed InSiNet+FCC

Fig. 18
figure 18

ROC curve for ISIC 2018 dataset

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reis, H.C., Turk, V., Khoshelham, K. et al. InSiNet: a deep convolutional approach to skin cancer detection and segmentation. Med Biol Eng Comput 60, 643–662 (2022). https://doi.org/10.1007/s11517-021-02473-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02473-0

Keywords

Navigation