Skip to main content
Log in

Euler common spatial patterns for EEG classification

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The technique of common spatial patterns (CSP) is a widely used method in the field of feature extraction of electroencephalogram (EEG) signals. Motivated by the fact that a cosine distance can enlarge the distance between samples of different classes, we propose the Euler CSP (e-CSP) for the feature extraction of EEG signals, and it is then used for EEG classification. The e-CSP is essentially the conventional CSP with the Euler representation. It includes the following two stages: each sample value is first mapped into a complex space by using the Euler representation, and then the conventional CSP is performed in the Euler space. Thus, the e-CSP is equivalent to applying the Euler representation as a kernel function to the input of the CSP. It is computationally as straightforward as the CSP. However, it extracts more discriminative features from the EEG signals. Extensive experimental results illustrate the discrimination ability of the e-CSP.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791. https://doi.org/10.1016/S1388-2457(02)00057-3

    Article  PubMed  Google Scholar 

  2. Daly JJ, Wolpaw JR (2008) Brain-computer interfaces in neurological rehabilitation. The Lancet Neurol 7(11):1032–1043. https://doi.org/10.1016/s1474-4422(08)70223-0

    Article  PubMed  Google Scholar 

  3. Kathner I, Wriessnegger SC, Müller-Putz GR, Kübler A, Halder S (2014) Effects of mental workload and fatigue on the P300, alpha and theta band power during operation of an ERP (P300) brain-computer interface. Biol Psychol 102:118–129. https://doi.org/10.1016/j.biopsycho.2014.07.014

    Article  PubMed  Google Scholar 

  4. Reza MF, Ikoma K, Ito T, Ogawa T, Mano Y (2007) N200 latency and P300 amplitude in depressed mood post-traumatic brain injury patients. Neuropsychol Rehabil 17(6):723–734. https://doi.org/10.1080/09602010601082441

    Article  PubMed  Google Scholar 

  5. Zhang N, Tang J, Liu Y, Zhou Z (2016) A novel P300-BCI with virtual stimulus continuous motion. The 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), pp. 415–417. https://doi.org/10.1109/IHMSC.2016.222

  6. Wang L, Liu X, Liang Z, Yang Z, Hu X (2019) Analysis and classification of hybrid BCI based on motor imagery and speech imagery. Measurement 147:106842. https://doi.org/10.1016/j.measurement.2019.07.070

    Article  Google Scholar 

  7. Hernán D, Fernando M, Elizabeth F, Córdova F (2018) Intra and inter-hemispheric correlations of the order/chaos fluctuation in the brain activity during a motor imagination task. Procedia Computer Science 139:456–463. https://doi.org/10.1016/j.procs.2018.10.250

    Article  Google Scholar 

  8. Florin P, Fazli S, Badower Y, Blankertz B, Müller K-R (2007) Single trial classification of motor imagination using 6 dry EEG electrodes. PLoS One 2(7):e637. https://doi.org/10.1371/journal.pone.0000637

    Article  Google Scholar 

  9. Lee S-B, Kim H-J, Kim H, Jeong J-H, Lee S-W, Kim D-J (2019) Comparative analysis of features extracted from EEG spatial, spectral and temporal domains for binary and multiclass motor imagery classification. Inf Sci 502:190–200. https://doi.org/10.1016/j.ins.2019.06.008

    Article  Google Scholar 

  10. Sözer AT, Fidan CB (2018) Novel spatial filter for SSVEP-based BCI: a generated reference filter approach. Comput Biol Med 96:98–105. https://doi.org/10.1016/j.compbiomed.2018.02.019

    Article  PubMed  Google Scholar 

  11. Pfurtscheller G, Lopes da Silva FH (1999) Event related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857. https://doi.org/10.1016/s1388-2457(99)00141-8

    Article  CAS  PubMed  Google Scholar 

  12. Hatamikia S, Nasrabadi AM (2015) Subject transfer BCI based on composite local temporal correlation common spatial pattern. Comput Biol Med 64:1–11. https://doi.org/10.1016/j.compbiomed.2015.06.001

    Article  PubMed  Google Scholar 

  13. Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller K-R (2008) Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag 25(1):41–56. https://doi.org/10.1109/msp.2008.4408441

    Article  Google Scholar 

  14. Vuckovic A, Sepulveda F (2008) A four-class BCI based on motor imagination of the right and the left-hand wrist. International Symposium on Applied Sciences on Biomedical and Communication Technologies, pp. 1–4. https://doi.org/10.1109/ISABEL.2008.4712628

    Article  Google Scholar 

  15. Hong K-S, Khan MJ (2017) Hybrid brain–computer interface techniques for improved classification accuracy and increased number of commands: a review. Front Neurorobotics 11:35. https://doi.org/10.3389/fnbot.2017.00035

    Article  Google Scholar 

  16. Wang H, Zheng W (2008) Local temporal common spatial patterns for robust single-trial EEG classification. IEEE Trans Neural Syst Rehabil Eng 16(2):131–139. https://doi.org/10.1109/TNSRE.2007.914468

    Article  PubMed  Google Scholar 

  17. Dong J, Chen B, Lu N, Zheng N, Wang H (2017) Correntropy induced metric based common spatial pattern. The 27th International Workshop on Machine Learning for Signal Processing (MLSP), pp.1–6. https://doi.org/10.1109/MLSP.2017.8168132

  18. Park Y, Chung W (2019) Frequency-optimized local region common spatial pattern approach for motor imagery classification. IEEE Trans Neural Syst Rehabil Eng 27(7):1378–1388. https://doi.org/10.1109/TNSRE.2019.2922713

    Article  PubMed  Google Scholar 

  19. Park Y, Chung W (2020) Optimal channel selection using correlation coefficient for CSP based EEG classification. IEEE Access 8:111514–111521. https://doi.org/10.1109/ACCESS.2020.3003056

    Article  Google Scholar 

  20. Park Y, Chung W (2018) BCI classification using locally generated CSP features. The 6th International Conference on Brain–Computer Interface (BCI), pp.1–4. https://doi.org/10.1109/IWW-BCI.2018.8311492

  21. Yu Z, Ma T, Fang N, Wang H, Li Z, Fan H (2020) Local temporal common spatial patterns modulated with phase locking value. Biomed Signal Process Control 59:101882. https://doi.org/10.1016/j.bspc.2020.101882

    Article  Google Scholar 

  22. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8(4):194–208. https://doi.org/10.1002/(SICI)1097-0193(1999)8:4%3c194::AID-HBM4%3e3.0.CO;2-C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chakraborty B, Ghosal S, Ghosh L, Konar A, Nagar AK (2019) Phase-sensitive common spatial pattern for EEG classification. IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 3654–3659. https://doi.org/10.1109/SMC.2019.8914070

  24. Geirnaert S, Francart T, Bertrand A (2021) Fast EEG-based decoding of the directional focus of auditory attention using common spatial patterns. IEEE Trans Biomed Eng 68(5):1557–1568. https://doi.org/10.1109/TBME.2020.3033446

    Article  PubMed  Google Scholar 

  25. Miao Y, Jin J, Daly I, Zuo C, Wang X, Cichocki A, Jung T (2021) Learning common time-frequency-spatial patterns for motor imagery classification. IEEE Trans Neural Syst Rehabil Eng 29:699–707. https://doi.org/10.1109/TNSRE.2021.3071140

    Article  PubMed  Google Scholar 

  26. Fu R, Han M, Tian Y, Shi P (2020) Improvement motor imagery EEG classification based on sparse common spatial pattern and regularized discriminant analysis. J Neurosci Methods 343:108833. https://doi.org/10.1016/j.jneumeth.2020.108833

    Article  PubMed  Google Scholar 

  27. Tan H, Zhang X, Guan N, Tao D, Huang X, Luo Z (2015) Two-dimensional Euler PCA for face recognition. International Conference on Multimedia Modeling, pp. 548–559. https://doi.org/10.1007/978-3-319-14442-9_59

  28. Liwicki S, Tzimiropoulos G, Zafeiriou S, Pantic M (2013) Euler principal component analysis. Int J Comput Vis 101(3):498–518. https://doi.org/10.1007/s11263-012-0558-z

    Article  Google Scholar 

  29. Liao S, Gao Q, Yang Z, Chen F, Nie F, Han J (2018) Discriminant analysis via joint Euler transform and L2,1-norm. IEEE Trans Image Process 27(11):5668–5682. https://doi.org/10.1109/TIP.2018.2859589

    Article  Google Scholar 

  30. Liu Y, Gao Q, Han J, Wang S (2018) Euler sparse representation for image classification. The 32th AAAI Conference on Artificial Intelligence (AAAI-18), pp. 3691–3697. https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16524

  31. Talukdar U, Hazarika SM, Gan JQ (2020) Adaptation of common spatial patterns based on mental fatigue for motor-imagery BCI. Biomed Signal Process Control 58:101829. https://doi.org/10.1016/j.bspc.2019.101829

    Article  Google Scholar 

  32. Ghaheri H, Ahmadyfard AR (2013) Extracting common spatial patterns from EEG time segments for classifying motor imagery classes in a brain computer interface (BCI). Sci Iran 20(6):2061–2072

  33. Koren Y, Carmel L (2004) Robust linear dimensionality reduction. IEEE Trans Vis Comput Graph 10(4):459–470. https://doi.org/10.1109/TVCG.2004.17

    Article  PubMed  Google Scholar 

  34. Tu W, Sun S (2012) A subject transfer framework for EEG classification. Neurocomputing 82:109–116. https://doi.org/10.1016/j.neucom.2011.10.024

    Article  Google Scholar 

  35. Fitch AJ, Kadyrov A, Christmas WJ, Kittler J (2005) Fast robust correlation. IEEE Trans Image Process 14(8):1063–1073. https://doi.org/10.1109/tip.2005.849767

    Article  PubMed  Google Scholar 

  36. Cho H, Ahn M, Ahn S, Kwon M, Jun SC (2017) EEG datasets for motor imagery brain–computer interface. GigaScience 6(7):1–8. https://doi.org/10.1093/gigascience/gix034

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fang N (2018) Lp-norm-based local temporal common spatial patterns. Southeast University, Master's Thesis

  38. Lotte F, Guan C (2011) Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans Biomed Eng 58(2):355–362. https://doi.org/10.1109/TBME.2010.2082539

    Article  PubMed  Google Scholar 

  39. Chicco D, Jurman G (2020) The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21:6. https://doi.org/10.1186/s12864-019-6413-7

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 62176054 and the University Synergy Innovation Program of Anhui Province under Grant GXXT-2020-015. The authors would like to thank the anonymous reviewers for their thoughtful comments and suggestions.

Funding

National Natural Science Foundation of China, 62176054, Haixian Wang, the University Synergy Innovation Program of Anhui Province, GXXT-2020–015, Haixian Wang

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixian Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Wei, M., Luo, N. et al. Euler common spatial patterns for EEG classification. Med Biol Eng Comput 60, 753–767 (2022). https://doi.org/10.1007/s11517-021-02488-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02488-7

Keywords

Navigation