Skip to main content

Advertisement

Log in

Quantifying neonatal patient effort using non-invasive model-based methods

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Patient-specific spontaneous breathing effort (SB) is common in invasively mechanically ventilated (MV) adult patients, and especially common in preterm neonates who are not typically sedated. However, there is no proven, ethically feasible and non-invasive method to quantify SB effort in neonates, creating the potential for model-based measures. Lung mechanics and SB effort are segregated using a basis function model to identify passive lung mechanics, and an additional time-varying elastance model to identify patient-specific SB effort and asynchrony as negative and positive added elastances, respectively. Data from ten preterm neonates on standard MV care in the neonatal intensive care unit (NICU) are used to assess this model-based approach, using area under the curve (AUC) for positive (asynchrony) and negative (SB effort) time-varying elastance. Median [interquartile-range (IQR)] of passive pulmonary lung elastance was 3.82 [2.09—5.80] cmH2O/ml. Median [IQR] AUC quantified SB effort was -0.32 [-0.43—-0.12]cmH2O/ml. AUC quantified asynchrony was 0.00 [0.00—0.01]cmH2O/ml, and affected 28% of the 25,287 total breaths. This proof of concept model-based approach provides a non-invasive, computationally straightforward, and thus clinically feasible means to quantify patient-specific spontaneous breathing effort and asynchrony.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hendriks G, Stephenson R, Yajamanyam PK (2018) Current practice in early management of neonatal respiratory distress syndrome: Is it evidence-based? Arch Dis Child Fetal Neonatal Ed 103(2):F190–F191

    Article  Google Scholar 

  2. Sweet DG et al (2010) European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants - 2010 update. Neonatology 97(4):402–417

    Article  PubMed  Google Scholar 

  3. Liggins GC, Howie RN, Liggins GC, Howie RN (1972) A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 50(4):515–525

    Article  CAS  PubMed  Google Scholar 

  4. Wood AJJ, Jobe AH (1993) Pulmonary Surfactant Therapy. N Engl J Med 328(12):861–868

    Article  Google Scholar 

  5. Sweet D et al (2007) European consensus guidelines on the management of neonatal respiratory distress syndrome. J Perinat Med 35(3):175–186

    Article  PubMed  Google Scholar 

  6. Lozano SM, Newnam KM (2016) Modalities of mechanical ventilation: Volume-targeted versus pressure-limited. Adv Neonatal Care 16(2):99–107

    Article  PubMed  Google Scholar 

  7. Jobe AH, Bancalari E (2001) Bronchopulmonary Dysplasia. Am J Respir Crit Care Med 163(7):1723–1729

    Article  CAS  PubMed  Google Scholar 

  8. Kair LR, Leonard DT, Anderson JDM (2012) Bronchopulmonary dysplasia. Pediatr Rev 33(6):255–263

    Article  PubMed  Google Scholar 

  9. Chiew YS et al (2015) Time-varying respiratory system elastance: A physiological model for patients who are spontaneously breathing. PLoS ONE 10(1):1–13

    Article  CAS  Google Scholar 

  10. Karbing DS et al (2012) Retrospective evaluation of a decision support system for controlled mechanical ventilation. Med Biol Eng Comput 50(1):43–51

    Article  PubMed  Google Scholar 

  11. Karbing DS, Kjærgaard S, Andreassen S, Espersen K, Rees SE (2011) Minimal model quantification of pulmonary gas exchange in intensive care patients. Med Eng Phys 33(2):240–248

    Article  PubMed  Google Scholar 

  12. Morton SE et al (2019) Predictive Virtual Patient Modelling of Mechanical Ventilation: Impact of Recruitment Function. Ann Biomed Eng 47(7):1626–1641

    Article  PubMed  Google Scholar 

  13. Kjaergaard S et al (2003) Non-invasive estimation of shunt and ventilation-perfusion mismatch. Intensive Care Med 29(5):727–734

    Article  PubMed  Google Scholar 

  14. Chiew YSW et al (2018) Assessing mechanical ventilation asynchrony through iterative airway pressure reconstruction. Comput Methods Programs Biomed 157:217–224

    Article  PubMed  Google Scholar 

  15. Kim KT, Knopp J, Dixon B, Chase G (2019) Quantifying neonatal pulmonary mechanics in mechanical ventilation. Biomed Signal Process Control 52:206–217

    Article  CAS  Google Scholar 

  16. Chiew YS, Chase JG, Shaw GM, Sundaresan A, Desaive T (2011) Model-based PEEP optimisation in mechanical ventilation. Biomed Eng Online 10(1):111

    Article  PubMed  PubMed Central  Google Scholar 

  17. J. H. T. Bates, 2009 “Pulmonary mechanics: A system identification perspective,” Proc. 31st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. Eng. Futur. Biomed. EMBC 2009, pp. 170–172

  18. Szlavecz A et al (2014) “The Clinical Utilisation of Respiratory Elastance Software (CURE Soft): a bedside software for real-time respiratory mechanics monitoring and mechanical ventilation management.,.” Biomed. Eng. Online 13(1):140

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chase JG et al (2018) Next-generation, personalised, model-based critical care medicine: A state-of-the art review of in silico virtual patient models, methods, and cohorts, and how to validation them. Biomed Eng Online 17(1):1–29

    Article  Google Scholar 

  20. Tawhai MH, Clark AR, Chase JG (2019) The Lung Physiome and virtual patient models: From morphometry to clinical translation. Morphologie 103(343):131–138

    Article  CAS  PubMed  Google Scholar 

  21. Redmond DP, Chiew YS, Major V, Chase JG (2019) Evaluation of model-based methods in estimating respiratory mechanics in the presence of variable patient effort. Comput Methods Programs Biomed 171:67–79

    Article  PubMed  Google Scholar 

  22. K. T. Kim, J. Knopp, B. Dixon, and J. G. Chase, “Mechanically ventilated premature babies have sex differences in specific elastance: A pilot study,” Pediatr. Pulmonol., no. July, p. ppul.24538, Oct. 2019.

  23. Jarreau PH et al (1999) Estimation of inspiratory pressure drop in neonatal and pediatric endotracheal tubes. J Appl Physiol 87(1):36–46

    Article  CAS  PubMed  Google Scholar 

  24. Kim KT, Redmond DP, Morton SE, Howe SL, Chiew YS, Chase JG (2017) Quantifying patient effort in spontaneously breathing patient using negative component of dynamic Elastance. IFAC-PapersOnLine 50(1):5486–5491

    Article  Google Scholar 

  25. Morton SE et al (2019) Optimising mechanical ventilation through model-based methods and automation. Annu Rev Control 48:369–382

    Article  Google Scholar 

  26. Morton SE et al (2018) A virtual patient model for mechanical ventilation. Comput Methods Programs Biomed 165:77–87

    Article  CAS  PubMed  Google Scholar 

  27. Langdon R, Docherty PD, Chiew YS, Chase JG (2017) Extrapolation of a non-linear autoregressive model of pulmonary mechanics. Math Biosci 284:32–39

    Article  PubMed  Google Scholar 

  28. Brown MK, DiBlasi RM (2011) Mechanical Ventilation of the Premature Neonate. Respir Care 56(9):1298–1313

    Article  PubMed  Google Scholar 

  29. Van Drunen EJ et al (2014) Visualisation of time-varying respiratory system elastance in experimental ARDS animal models. BMC Pulm Med 14(1):1–9

    Google Scholar 

  30. Kannangara DO et al (2016) Estimating the true respiratory mechanics during asynchronous pressure controlled ventilation. Biomed Signal Process Control 30:70–78

    Article  Google Scholar 

  31. Knopp JL, Chase JG, Kim KT, Shaw GM (2021) “Model-based estimation of negative inspiratory driving pressure in patients receiving invasive NAVA mechanical ventilation.” Comput. Methods Programs Biomed 208:106300

    Article  PubMed  Google Scholar 

  32. Sundaresan A, Chase JG, Shaw GM, Chiew YS, Desaive T (2011) “Model-based optimal PEEP in mechanically ventilated ARDS patients in the intensive care unit.,.” Biomed. Eng. Online 10(1):64

    Article  PubMed  PubMed Central  Google Scholar 

  33. C. Schranz, T. Becher, D. Schädler, N. Weiler, and K. Möller, 2013 “Model-Based Ventilator Settings in Pressure Controlled Ventilation,” vol. c, no. 6, pp. 10–11

  34. Greenspan J, Abbasi S, Bhutani V (1988) Sequential changes in pulmonary mechanics in the very low birth weight (≤1000 grams) infant. J Pediatr 113(4):732–737

    Article  CAS  PubMed  Google Scholar 

  35. Sundaresan A, Chase JG (2012) Positive end expiratory pressure in patients with acute respiratory distress syndrome - The past, present and future. Biomed Signal Process Control 7(2):93–103

    Article  Google Scholar 

  36. S. E. Rees and D. S. Karbing, “Determining the appropriate model complexity for patient-specific advice on mechanical ventilation,” Biomed. Eng. / Biomed. Tech., vol. 62, no. 2, Jan. 2017.

  37. Howe SL et al (2020) “Inspiratory respiratory mechanics estimation by using expiratory data for reverse-triggered breathing cycles,.” Comput. Methods Programs Biomed 186:105184

    Article  CAS  PubMed  Google Scholar 

  38. Sweet DG et al (2013) European consensus guidelines on the management of neonatal respiratory distress syndrome in preterm infants-2013 update. Neonatology 103(4):353–368

    Article  PubMed  Google Scholar 

  39. Lozano-Zahonero S et al (2011) Automated mechanical ventilation: Adapting decision making to different disease states. Med Biol Eng Comput 49(3):349–358

    Article  CAS  PubMed  Google Scholar 

  40. Karbing DS et al (2007) Variation in the PaO2/FiO2 ratio with FiO2: mathematical and experimental description, and clinical relevance. Crit Care 11(6):R118

    Article  PubMed  PubMed Central  Google Scholar 

  41. Garofalo E et al (2018) Recognizing, quantifying and managing patient-ventilator asynchrony in invasive and noninvasive ventilation. Expert Rev Respir Med 12(7):557–567

    Article  CAS  PubMed  Google Scholar 

  42. D. C. Chao, D. J. Scheinhorn, M. A. Hassenpflug, and M. S. Barlow, “Patient-ventilator trigger asynchrony in prolonged mechanical ventilation,” Chest, vol. 110, no. 4 SUPPL., 1996.

  43. Torday JS, Nielsen HC (1987) The sex difference in fetal lung surfactant production. Exp Lung Res 12(1):1–19

    Article  CAS  PubMed  Google Scholar 

  44. Peacock JL, Marston L, Marlow N, Calvert SA, Greenough A (2012) Neonatal and infant outcome in boys and girls born very prematurely. Pediatr Res 71(3):305–310

    Article  PubMed  Google Scholar 

  45. Chiew YSW et al (2015) Feasibility of titrating PEEP to minimum elastance for mechanically ventilated patients. Pilot Feasibility Stud 1:1–10

    Article  Google Scholar 

  46. Chiew YS et al (2012) Physiological relevance and performance of a minimal lung model – an experimental study in healthy and acute respiratory distress syndrome model piglets. BMC Pulm Med 12(1):1

    Article  Google Scholar 

  47. Beck J et al (2009) Patient-ventilator interaction during neurally adjusted ventilatory assist in low birth weight infants. Pediatr Res 65(6):663–668

    Article  PubMed  PubMed Central  Google Scholar 

  48. Longhini F et al (2015) Neurally adjusted ventilatory assist in preterm neonates with acute respiratory failure. Neonatology 107(1):60–67

    Article  PubMed  Google Scholar 

  49. Langdon R, Docherty PD, Chiew YS, Möller K, Chase JG (2016) Use of basis functions within a non-linear autoregressive model of pulmonary mechanics. Biomed Signal Process Control 27:44–50

    Article  Google Scholar 

  50. Spinelli E, Mauri T, Beitler JR, Pesenti A, Brodie D (2020) Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med 46(4):606–618

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kim KT, Knopp J, Chase JG (2021) “Quantifying patient spontaneous breathing effort using model-based methods,.” Biomed. Signal Process. Control 69:102809

    Article  Google Scholar 

  52. Sonia Rodriguez Rivero AMR (2014) “Neurally Adjusted Vetilatory Assist in the Newborn.” J. Neonatal Biol 03(02):2–5

    Article  Google Scholar 

  53. Beck J, Tucci M, Emeriaud G, Lacroix J, Sinderby C (2004) Prolonged Neural Expiratory Time Induced by Mechanical Ventilation in Infants. Pediatr Res 55(5):747–754

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research is funded by New Zealand Tertiary Education Commission (TEC) MedTech CoRE (Centre of Research Excellence) (Grant #3705718), the New Zealand CureKids Foundation (Grant #3904) and University of Canterbury PhD Writing scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyeong Tae Kim.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.T., Knopp, J., Dixon, B. et al. Quantifying neonatal patient effort using non-invasive model-based methods. Med Biol Eng Comput 60, 739–751 (2022). https://doi.org/10.1007/s11517-021-02491-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02491-y

Keywords

Navigation