Skip to main content
Log in

Evaluation of carotid intima media thickness measurement from ultrasound images

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A third of deaths in the world are due to cardiovascular diseases [1]. Atherosclerosis is the major cause of myocardial infarction, which occurs by deposition of plaque in the coronary artery. The chance of stroke rises with the thickening of carotid artery due to the plaque. Hence, accurate measurement of the intima-media thickness is necessary for predicting the chance of stroke. The stopping criterion and active resampling are incorporated in greedy snake segmentation technique. This modified algorithm segmented and extracted the intima-media complex in the ultrasound images. The snake control points obtained from the boundary of the region of interest forms the contour and demarcates the boundary of intima-media complex. The thickness ± standard deviation and the intra-observer error values obtained by modified algorithm are in conformity with the measurements by expert. The intra-observer error values for greedy snake segmentation methods were 0.10 and 0.09 for manual snake initialization and automatic snake initialization, respectively. Shapiro–Wilk test and One-way ANOVA test explains there is no statistical difference between group means obtained from these segmentation techniques and the expert measurement. The statistical analysis proves values of the intima-media thickness obtained from both snake segmentation techniques are very close to expert measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World Health Organization, World Health Statistics 2020. (2020). Monitoring Health for the SGs. Sustainable Development Goals

  2. A. H. A. S. Update, Heart Disease and Stroke Statistics — 2020 Update. (2020). A Report from the American Heart Association.

  3. Loizou CP, Pantziaris M (2015). An integrated system for the complete segmentation of the common carotid artery bifurcation in ultrasound images, 1(1), 11–24

  4. Loizou CP, Nicolaides A, Kyriacou E, Georghiou N, Griffin M, Pattichis CS (2015) A Comparison of Ultrasound Intima-Media Thickness Measurements of the Left and Right Common Carotid Artery. IEEE journal of translational engineering in health and medicine 3:1900410. https://doi.org/10.1109/JTEHM.2015.2450735

    Article  PubMed  Google Scholar 

  5. Dis SC (1995) Carotid endarterectomy for patients with asymptomatic internal carotid artery stenosis. J Stroke Cerebrovasc Dis 5(1):56–57. https://doi.org/10.1016/S1052-3057(10)80088-6

    Article  Google Scholar 

  6. Christodoulou CI, Pattichis CS, Pantziaris M, Nicolaides A (2003) Texture-based classification of atherosclerotic carotid plaques. IEEE Trans Med Imaging 22(7):902–912. https://doi.org/10.1109/TMI.2003.815066

    Article  CAS  PubMed  Google Scholar 

  7. Lamont D, Parker L, White M, Unwin N, Bennett SM, Cohen M, Richardson D, Dickinson HO, Adamson A, Alberti KG, Craft AW (2000) Risk of cardiovascular disease measured by carotid intima-media thickness at age 49–51: lifecourse study. BMJ (Clinical Research Ed) 320(7230):273–278. https://doi.org/10.1136/bmj.320.7230.273

    Article  CAS  Google Scholar 

  8. Nicolaides AN, Kakkos SK, Griffin M, Geroulakos G, Bashardi E (2002) Ultrasound plaque characterisation, genetic markers and risks. Pathophysiol Haemost Thromb 32(5–6):371–377. https://doi.org/10.1159/000073603

    Article  PubMed  Google Scholar 

  9. Middleton I, Damper RI (2004) Segmentation of magnetic resonance images using a combination of neural networks and active contour models. Med Eng Phys 26(1):71–86. https://doi.org/10.1016/S1350-4533(03)00137-1

    Article  PubMed  Google Scholar 

  10. Wilhjelm JE, Grønholdt ML, Wiebe B, Jespersen SK, Hansen LK, Sillesen H (1998) Quantitative analysis of ultrasound B-mode images of carotid atherosclerotic plaque: correlation with visual classification and histological examination. IEEE Trans Med Imaging 17(6):910–922. https://doi.org/10.1109/42.746624

    Article  CAS  PubMed  Google Scholar 

  11. Zarins CK, Xu C, Glagov S (2001) Atherosclerotic enlargement of the human abdominal aorta. Atherosclerosis 155(1):157–164. https://doi.org/10.1016/S0021-9150(00)00527-X

    Article  CAS  PubMed  Google Scholar 

  12. Petroudi S, Loizou C, Pantziaris M, Pattichis C (2012). Segmentation of the common carotid intima-media complex in ultrasound images using active contours. IEEE Transactions on Biomedical Engineering, 59(11 PART1), 3060–3069. https://doi.org/10.1109/TBME.2012.2214387

  13. Loizou CP (2014) A review of ultrasound common carotid artery image and video segmentation techniques. Med Biol Eng Compu 52(12):1073–1093. https://doi.org/10.1007/s11517-014-1203-5

    Article  Google Scholar 

  14. Barnett HJM (1991) Original contributions North American symptomatic carotid endarterectomy trial: Methods, patient characteristics, and progress. Stroke 22(6):711–720. https://doi.org/10.1161/01.str.22.6.711

    Article  Google Scholar 

  15. Mao F, Gill J, Downey D, Fenster A (2000) Segmentation of carotid artery in ultrasound images: Method development and evaluation technique. Med Phys 27(8):1961–1970. https://doi.org/10.1118/1.1287111

    Article  CAS  PubMed  Google Scholar 

  16. Zahalka A, Fenster A (2001) An automated segmentation method for three-dimensional carotid ultrasound images. Phys Med Biol 46(4):1321–1342. https://doi.org/10.1088/0031-9155/46/4/327

    Article  CAS  PubMed  Google Scholar 

  17. Polak FJ (1992) Doppler Sonography: An Overview, In Peripheral Vascular Sonography: A Practical Guide. Williams and Wilkins, Baltimore USA

    Google Scholar 

  18. El-Barghouty N, Nicolaides A, Bahal V, Geroulakos G, Androulakis A (1996) The identification of the high risk carotid plaque. Eur J Vasc Endovasc Surg 11(4):470–478. https://doi.org/10.1016/S1078-5884(96)80184-5

    Article  CAS  PubMed  Google Scholar 

  19. Merritt CR (1989) Ultrasound safety: What are the issues?. Radiology 173:304–306. Available from: https://doi.org/10.1148/radiology.173.2.2678243.

  20. Meiburger KM, Acharya UR, Molinari F (2018) Automated localization and segmentation techniques for B-mode ultrasound images: A review. Comput Biol Med 92:210–235

    Article  Google Scholar 

  21. Kass M, Witkin A, Terzopoulos D (1988) Snakes: Active contour models. Int J Comput Vision 1(4):321–331

    Article  Google Scholar 

  22. Williams DJ, Shah M (1992) A Fast algorithm for active contours and curvature estimation, CVGIP: Image Understanding, 55(1):14–26. https://doi.org/10.1016/1049-9660(92)90003-L

  23. Xu C, Prince JL (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369. https://doi.org/10.1109/83.661186

    Article  CAS  PubMed  Google Scholar 

  24. Loizou C (2012) Ultrasound image analysis of the carotid artery, Applications in ultrasound filtering, segmentation and texture analysis. LAP Lambert Academic Publishing, CA, USA

    Google Scholar 

  25. Loizou CP, Pattichis CS, Pantziaris M, Tyllis T, Nicolaides A (2007) Snakes based segmentation of the common carotid artery intima media. Med Biol Eng Compu 45(1):35–49. https://doi.org/10.1007/s11517-006-0140-3

    Article  CAS  Google Scholar 

  26. Loizou CP, Theofanous C, Pantziaris M, Kasparis T (2014) Despeckle filtering software toolbox for ultrasound imaging of the common carotid artery. Comput Methods Programs Biomed 114(1):109–124. https://doi.org/10.1016/j.cmpb.2014.01.018

    Article  PubMed  Google Scholar 

  27. Tiilikainen N (2007) A comparative study of active contour snakes. Copenhagen University, Denmark

    Google Scholar 

  28. Polak JF (2009) Carotid intima-media thickness: An early marker of cardiovascular disease. Ultrasound Q 25(2):55–61. https://doi.org/10.1097/RUQ.0b013e3181a901ab.1983,18(4),pp.721-722

    Article  PubMed  Google Scholar 

  29. Wendelhag I, Liang Q, Gustavsson T, Wikstrand J. (1997) A new automated computerized analyzing system simplifies reading and reduces the variability in ultrasound measurement of intima-media thickness. Stroke. 28, 2195–2200. https://www.ncbi.nlm.nih.gov/pubmed/9368564

  30. The Laboratory of eHealth (2012) Database for IMT Segmentation, University of Cyprus, Cyprus. Copyright (c) 2012. http://www.medinfo.cs.ucy.ac.cy/index.php/downloads/datasets

  31. Abd-Elmoniem KZ, Youssef ABM, Kadah YM (2002) Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion. IEEE Trans Biomed Eng 49(9):997–1014. https://doi.org/10.1109/TBME.2002.1028423

    Article  PubMed  Google Scholar 

  32. Goodman JW (1976) Some fundamental properties of speckle. J Opt Soc Am 66(11):1145. https://doi.org/10.1364/JOSA.66.001145

    Article  Google Scholar 

  33. Loizou CP, Pattichis CS, Christodoulou CI, Istepanian RSH, Pantziaris M, Nicolaides A (2005) Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery. IEEE Trans Ultrason Ferroelectr Freq Control 52(10):1653–1669. https://doi.org/10.1109/TUFFC.2005.1561621

    Article  PubMed  Google Scholar 

  34. Kuan DT, Sawchuk AA, Strand TC, Chavel P (1985). Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-7(2), 165–177. https://doi.org/10.1109/TPAMI.1985.4767641

  35. Otsu N (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Trans On Systems, Man, and Cybernetics 9(1):62–66

    Article  Google Scholar 

  36. Smitha B, K PJ (2019) Analysis of Carotid Plaque Using Multifractal method in Ultrasound Images. (2019) Annu Int Conf IEEE Eng Med Biol Soc 943–946. https://doi.org/10.1109/EMBC.2019.8856759.

  37. Smitha KPJ (2019) A New Approach for Classification Of Atherosclerosis Of Common Carotid Artery From Ultrasound Images. Journal of Mechanics in Medicine and Biology 19(1):1–18. https://doi.org/10.1142/S0219519419400013

    Article  CAS  Google Scholar 

  38. Smitha B, Joseph K. Paul (2019) Fractal and multifractal analysis of atherosclerotic plaque in ultrasound images of the carotid artery. Chaos, Solitons and Fractals 123, 91–100. https://doi.org/10.1016/j.chaos.2019.03.041.

Download references

Acknowledgements

We would like to acknowledge the help provided by Cyprus Institute of Neurology and Genetics, in Nicosia, Cyprus, for providing the image database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Smitha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smitha, B., Yadav, D. & Joseph, P.K. Evaluation of carotid intima media thickness measurement from ultrasound images. Med Biol Eng Comput 60, 407–419 (2022). https://doi.org/10.1007/s11517-021-02496-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02496-7

Keywords

Navigation