Skip to main content

Advertisement

Log in

Velocity tracking of cardiac vector loops to identify signs of stress-induced ischaemia

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Coronary artery disease (CAD) is among the leading causes of death worldwide. Initial studies require an electrocardiogram stress test often followed by cardiac imaging procedures. However, conventional indices still show insufficient diagnostic performance. We propose quaternion methods to evaluate abnormal alterations during ventricular depolarization and repolarization. Assessment was conducted during a Bruce protocol treadmill stress test and after the end of the exercise. We developed an algorithm to automatically determine the beginning and end of exercise and then, computed the angular and linear velocities. Statistical analysis for feature selection and classification between ischaemic and non-ischaemic patients was used. The most significant markers were maximum linear velocity during ventricular depolarization (p < 5E-9) and maximum angular velocity during the second half of the repolarization loop (p < 5E-16). The latter reached sensitivity / specificity pair of 78 / 92 (AUC 0.89). A linear classifier showed a trend of reduction in cardiac vector velocity in at-risk patients after the end of exercise. The sensitivity / specificity pair reached was 86 / 100. Trajectory deviations of depolarization / repolarization loops that result from ischaemia effects, could be responsible for the observed reduction in dynamic changes during exercise. Further studies could provide non-invasive complementary tools to detect CAD risk.

This data is mandatory, please provide

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Alpert J, Thygesen K, Antman E, Bassand J (2000) Myocardial infarction redefined – a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 36(3):959–969

    Article  CAS  PubMed  Google Scholar 

  2. Antzelevitch C, Di Diego J (2019) Counterpoint Tpeak Tend interval as a marker of arrhythmic risk. Heart Rhythm 16(6):954–955

    Article  PubMed  PubMed Central  Google Scholar 

  3. Balfour PJ, Gonzalez J, Shaw P, Caminero M, Holland E, Melson J, Sobczak M, Izarnotegui V, Watson D, Beller G, Bourque J (2020) High-frequency QRS analysis to supplement ST evaluation in exercise stress electrocardiography: incremental diagnostic accuracy and net reclassification. J Nucl Cardiol 27 (6):2063–2075

    Article  PubMed  Google Scholar 

  4. Barsky B. (ed.) (2010) Rethinking Quaternions. Theory and Computation, Morgan & Claypool, California

  5. Cruces P, Arini P (2016) A novel method for cardiac vector velocity measurement: evaluation in myocardial infarction. Biomed Signal Proc and Control 28:58–62

    Article  Google Scholar 

  6. Cruces P, Arini P (2017) Quaternion-based study of angular velocity of the cardiac vector during myocardial ischaemia. Int J Cardiol 248:57–63

    Article  PubMed  Google Scholar 

  7. Cruces P, Torkar D, Arini P (2020) Biomarkers of pre-existing risk of torsade de pointes under sotalol treatment. J Electrocardiol 60:177–183

    Article  PubMed  Google Scholar 

  8. Cruces P, Torkar D, Arini P (2020) Dynamic features of cardiac vector as alternative markers of drug-induced spatial dispersion. J Pharmacol Toxicol Methods 104:106894

    Article  CAS  PubMed  Google Scholar 

  9. Demski A, Llamedo Soria M. (2016) ecg-kit: a MATLAB toolbox for cardiovascular signal processing. Journal of Open Research Software 4(1):e8

    Article  Google Scholar 

  10. Firoozabadi R, Gregg R, Babaeizadeh S (2016) Identification of exercise-induced ischemia using QRS slopes. J Electrocardiol 49(1):55–59

    Article  PubMed  Google Scholar 

  11. Huikuri H, Verrier R, Malik M, Lombardi F, Schmidt G, Zabel M (2019) Our doubts about the usefulness of the tpeak-tend interval. Heart Rhythm 16(6):e49

    Article  PubMed  Google Scholar 

  12. Khan MA, Hashim MJ, Mustafa H, Baniyas MY, Al Suwaidi S, AlKatheeri R, Alblooshi F, Almatrooshi M, Alzaabi M, Al Darmaki RS, Lootah S (2020) Global epidemiology of ischemic heart disease: results from the global burden of disease study. Cureus 12(7):e9349

    PubMed  PubMed Central  Google Scholar 

  13. Kors JA, Van Herpen G, Van Bemmel JH (1990) Reconstruction of the Frank vectorcardiogram from standard electrocardiographic leads: diagnostic comparison of different methods. Eur Heart J 11:1083–1092

    Article  CAS  PubMed  Google Scholar 

  14. Lauer M (2009) Elements of danger - the case of medical imaging. N Engl J Med 361(9):841–843

    Article  CAS  PubMed  Google Scholar 

  15. Laukkanen J, Kurl S, Lakka T, Tuomainen T, Rauramaa R, Salonen R, Eränen J., Salonen J (2001) Exercise-induced silent myocardial ischemia and coronary morbidity and mortality in middle-aged men. J Am Coll Cardiol 38(1):72–79

    Article  CAS  PubMed  Google Scholar 

  16. Llamedo M, Marti̇nez J, Albertal M (2013) Morphologic features of the ECG for detection of stress-induced ischemia. In: Computing in cardiology, p 591–94

  17. Macfarlane P., Van Oosterom A., Pahlm O., Kligfield P., Janse M., Camm J. (eds.) (2011) Comprehensive electrocardiology, vol 3, chap. 23, p 1108–1112 Springer

  18. Malik M, Huikuri H, Lombardi F, Schmidt G, Verrier R, Zabel M (2019) Is the Tpeak-Tend interval as a measure of repolarization heterogeneity dead or just seriously wounded? Heart Rhythm 16(6):952–953

    Article  PubMed  Google Scholar 

  19. Mohammed N, Mahfouz A, Achkar K, Rafie I, Hajar R (2013) Contrast-induced nephropathy. Heart Views 14(3):106–116

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pueyo E, Sörnmo L., Laguna P (2008) QRS Slopes for detection and characterization of myocardial ischemia. IEEE Trans. on Biomed. Eng 55 (2)

  21. Rehman R, Yelamanchili V, Makaryus A (2021) Cardiac imaging StatPearls Publishing

  22. Schaerli N, Abächerli R, Walter J, Honegger U, Puelacher C, Rinderknecht T, Müller D., Boeddinghaus J, Nestelberger T, Strebel I, Badertscher P, du Fay de Lavallaz J, Twerenbold R, Wussler D, Hofer J, Leber R, Kaiser C, Osswald S, Wild D., Zellweger M., Mueller C., Reichlin T (2020) Incremental value of high-frequency qrs analysis for diagnosis and prognosis in suspected exercise-induced myocardial ischaemia. Eur Heart J 9(8):836–847

    Google Scholar 

  23. Sharir T, Merzon K, Kruchin I, Bojko A, Toledo E, Asman APC (2012) Use of electrocardiographic depolarization abnormalities for detection of stress-induced ischemia as defined by myocardial perfusion imaging. Am J Cardiol 109(5):642–650

    Article  PubMed  Google Scholar 

  24. Telemetric (2015) Holter ECG Warehouse: Exercise Testing and Perfusion Imaging Database.http://thew-project.org/Database/E-OTH-12-0927-015.html

  25. Thygesen K, Alpert J, Jaffe A, Simoons MBRC, White H (2012) Third universal definition of myocardial infarction. Eur Heart J 33:2551–2567

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the contribution of Dr. Ingallina, F.J. of the Institute of Medical Research “Dr. Alfredo Lanari”, UBA, Buenos Aires, Argentina, for his collaboration in the revision and correction of the current methods for diagnosing coronary disease described in the introduction.

Funding

This work was supported by CONICET, under project PIP #112-20130100552CO and Agencia MINCYT, under project PICT 2145-2016, Argentina. Moreover, the authors acknowledge the financial support from UTN BA (ICUTIBA0006564TC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Daniel Cruces.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruces, P.D., Soria, M.L. & Arini, P.D. Velocity tracking of cardiac vector loops to identify signs of stress-induced ischaemia. Med Biol Eng Comput 60, 1313–1321 (2022). https://doi.org/10.1007/s11517-022-02503-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02503-5

Keywords