Skip to main content
Log in

Study of the significance of parameters and their interaction on assessing femoral fracture risk by quantitative statistical analysis

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Early assessment of hip fracture helps develop therapeutic and preventive mechanisms that may reduce the occurrence of hip fracture. An accurate assessment of hip fracture risk requires proper consideration of the loads, the physiological and morphological parameters, and the interactions between these parameters. Hence, this study aims at analyzing the significance of parameters and their interactions by conducting a quantitative statistical analysis. A multiple regression model was developed considering different loading directions during a sideways fall (angle \(\left( \alpha \right)\) and \(\left( \beta \right)\) on the coronal and transverse planes, respectively), age, gender, patient weight, height, and femur morphology as independent parameters and Fracture Risk Index (FRI) as a dependent parameter. Strain-based criteria were used for the calculation of FRI with the maximum principal strain obtained from quantitative computed tomography–based finite element analysis. The statistical result shows that \(\beta\) \(\left( {p < 0.0000} \right)\), age \(\left( {p < 0.0006} \right)\), true moment length \(\left( {p < 0.0006} \right)\), gender \(\left( {p < 0.0015} \right)\), FNA \(\left( {p < 0.0213} \right)\), height \(\left( {p < 0.0238} \right)\), and FSL \(\left( {p < 0.0315} \right)\) significantly affect FRI where \(\beta\) is the most influential parameter. The significance of two-level interaction \(\left( {p < 0.05} \right)\) and three-level interaction \(\left( {p < 0.05} \right)\) shows that the effect of parameters is dissimilar and depends on other parameters suggesting the variability of FRI from person to person.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee Y, Ogihara N, Lee TJ (2019) Assessment of finite element models for prediction of osteoporotic fracture. J Mech Behav Biomed Mater 97:312–320

    Article  PubMed  Google Scholar 

  2. Szulc P, Marchand F, Duboeuf F, Delmas PJ (2000) Cross-sectional assessment of age-related bone loss in men: the MINOS study. Bone 26(2):123–129

    Article  CAS  PubMed  Google Scholar 

  3. Bettamer A (2013) prediction of proximal femur fracture: finite element modeling based on mechanical damage and experimental validation.

  4. Group RoaWS (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. HO Technical Report Series, vol 843. World Health Organization, Geneva

  5. Organization WH WHO scientific group on the assessment of osteoporosis at primary health care level: summary meeting report 2004. Belgium WHO:5–7

  6. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, Eisman JA, Fujiwara S, Kroger H, Mellstrom DJ (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20(7):1185–1194

    Article  PubMed  Google Scholar 

  7. Tenenhouse A, Joseph L, Kreiger N, Poliquin S, Murray T, Blondeau L, Berger C, Hanley D, Prior J, International CRG (2000) Estimation of the prevalence of low bone density in Canadian women and men using a population-specific DXA reference standard: the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporos Int 11(10):897–904

    Article  CAS  PubMed  Google Scholar 

  8. Beck TJ, Oreskovic TL, Stone KL, Ruff CB, Ensrud K, Nevitt MC, Genant HK, Cummings SR (2001) Structural adaptation to changing skeletal load in the progression toward hip fragility: the study of osteoporotic fractures. J Bone Miner Res 16(6):1108–1119

    Article  CAS  PubMed  Google Scholar 

  9. Ferizi U, Besser H, Hysi P, Jacobs J, Rajapakse CS, Chen C, Saha PK, Honig S, Chang GJ (2019) Artificial intelligence applied to osteoporosis: a performance comparison of machine learning algorithms in predicting fragility fractures from MRI data. J Magn Reson Imaging 49(4):1029–1038

    Article  PubMed  Google Scholar 

  10. Luo Y, Ferdous Z, Leslie W (2011) A preliminary dual-energy X-ray absorptiometry-based finite element model for assessing osteoporotic hip fracture risk. Proc Inst Mech Eng [H] 28:1188–1195

    Article  Google Scholar 

  11. Ahlborg HG, Nguyen ND, Nguyen TV, Center JR, Eisman JA (2005) Contribution of hip strength indices to hip fracture risk in elderly men and women. J Bone Miner Res 20(10):1820–1827

    Article  PubMed  Google Scholar 

  12. Beck TJ, Ruff CB, Warden KE, Scott WW Jr, Rao GU (1990) Predicting femoral neck strength from bone mineral data: a structural approach. Invest Radiol 25(1):6–18

    Article  CAS  PubMed  Google Scholar 

  13. Mourtada FA, Beck TJ, Hauser DL, Ruff CB, Bao GJ (1996) Curved beam model of the proximal femur for estimating stress using dual-energy x-ray absorptiometry derived structural geometry. J Orthop Res 14(3):483–492

    Article  CAS  PubMed  Google Scholar 

  14. Keyak JH, Kaneko TS, Tehranzadeh J, Skinner HB (2005) Predicting proximal femoral strength using structural engineering models. Clin Orthop Relat Res 437:219–228

    Article  Google Scholar 

  15. Duchemin L, Bousson V, Raossanaly C, Bergot C, Laredo J, Skalli W, Mitton D (2008) Prediction of mechanical properties of cortical bone by quantitative computed tomography. Med Eng Phys 30(3):321–328

    Article  CAS  PubMed  Google Scholar 

  16. Bauer J, Kohlmann S, Eckstein F, Mueller D, Lochmüller E-M, Link T (2006) Structural analysis of trabecular bone of the proximal femur using multislice computed tomography: a comparison with dual X-ray absorptiometry for predicting biomechanical strength in vitro. Calcif Tissue Int 78(2):78–89

    Article  CAS  PubMed  Google Scholar 

  17. Ohnaru K, Sone T, Tanaka K, Akagi K, Ju Y-I, Choi H-J, Tomomitsu T, Fukunaga M (2013) Hip structural analysis: a comparison of DXA with CT in postmenopausal Japanese women. Sringerplus 2(1):331

    Article  Google Scholar 

  18. Faisal TR, Luo Y (2017) Study of the variations of fall induced hip fracture risk between right and left femurs using CT-based FEA. Biomed Eng Online 16(1):116

    Article  PubMed  PubMed Central  Google Scholar 

  19. Luo Y, Ferdous Z, Leslie W (2011) A preliminary dual-energy X-ray absorptiometry-based finite element model for assessing osteoporotic hip fracture risk. Proc Inst Mech Eng H 225(12):1188–1195

    Article  CAS  PubMed  Google Scholar 

  20. Wiktorowicz M, Goeree R, Papaioannou A, Adachi JD, Papadimitropoulos E (2001) Economic implications of hip fracture: health service use, institutional care and cost in Canada. Osteoporos Int 12(4):271–278

    Article  CAS  PubMed  Google Scholar 

  21. Ariza OR (2010) A novel approach to finite element analysis of hip fractures due to sideways falls. University of Waterloo

  22. Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP (1999) Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 32(10):1013–1020

    Article  CAS  PubMed  Google Scholar 

  23. Marks R, Allegrante JP, MacKenzie CR, Lane JM (2003) Hip fractures among the elderly: causes, consequences and control. Ageing Res Rev 2(1):57–93

    Article  PubMed  Google Scholar 

  24. Esses SI, Lotz JC, Hayes WC (1989) Biomechanical properties of the proximal femur determined in vitro by single-energy quantitative computed tomography. J Bone Miner Res 4(5):715–722

    Article  CAS  PubMed  Google Scholar 

  25. Pinilla T, Boardman K, Bouxsein M, Myers E, Hayes W (1996) Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcif Tissue Int 58(4):231–235

    Article  CAS  PubMed  Google Scholar 

  26. Ford CM, Keaveny TM, Hayes WC (1996) The effect of impact direction on the structural capacity of the proximal femur during falls. J Bone Miner Res 11(3):377–383

    Article  CAS  PubMed  Google Scholar 

  27. Fajar JK, Taufan T, Syarif M, Azharuddin A (2018) Hip geometry and femoral neck fractures: a meta-analysis. J Orthop Transl 13:1–6

    Google Scholar 

  28. Faisal TR, Luo Y (2016) Study of stress variations in single-stance and sideways fall using image-based finite element analysis. Bio-Med Mater Eng 27(1):1–14

    Article  Google Scholar 

  29. Keller TS (1994) Predicting the compressive mechanical behaviour of bone. J Blomechanics 29:1159–1168

    Article  Google Scholar 

  30. Gong H, Zhang M, Fan Y, Kwok WL, Leung PC (2012) Relationships between femoral strength evaluated by nonlinear finite element analysis and BMD, material distribution and geometric morphology. Ann Biomed Eng 40(7):1575–1585

    Article  PubMed  Google Scholar 

  31. Schileo E, Taddei F, Cristofolini L, Viceconti MJ (2008) Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J Biomech 41(2):356–367

    Article  PubMed  Google Scholar 

  32. Ashman R, Van Buskirk W (1987) The elastic properties of a human mandible. Adv Dent Res 1(1):64–67

    Article  CAS  PubMed  Google Scholar 

  33. Keyak JH, Rossi SA, Jones KA, Skinner HB (1997) Prediction of femoral fracture load using automated finite element modeling. J Biomech 31(2):125–133

    Article  Google Scholar 

  34. Lotz J, Cheal E, Hayes WC (1991) Fracture prediction for the proximal femur using finite element models: part II—nonlinear analysis. J Biomech Eng

  35. Kheirollahi H, Luo Y (2015) Assessment of hip fracture risk using cross-section strain energy determined by QCT-based finite element modeling. BioMed Res Int

  36. Faisal TR, Luo Y (2016) Study of stress variations in single-stance and sideways fall using image-based finite element analysis. BioMed Res Int 27(1):1–14

    Google Scholar 

  37. Eckstein F, Wunderer C, Boehm H, Kuhn V, Priemel M, Link TM, Lochmüller EM (2004) Reproducibility and side differences of mechanical tests for determining the structural strength of the proximal femur. J Bone Miner Res 19(3):379–385

    Article  PubMed  Google Scholar 

  38. Nishiyama KK, Gilchrist S, Guy P, Cripton P, Boyd SK (2013) Proximal femur bone strength estimated by a computationally fast finite element analysis in a sideways fall configuration. J Biomech 46(7):1231–1236

    Article  PubMed  Google Scholar 

  39. Manske S, Liu-Ambrose T, De Bakker P, Liu D, Kontulainen S, Guy P, Oxland T, McKay H (2006) Femoral neck cortical geometry measured with magnetic resonance imaging is associated with proximal femur strength. Osteoporos Int 17(10):1539–1545

    Article  CAS  PubMed  Google Scholar 

  40. Yoshikawa T, Turner C, Peacock M, Slemenda C, Weaver C, Teegarden D, Markwardt P, Burr D (1994) Geometric structure of the femoral neck measured using dual-energy X-ray absorptiometry. J Bone Miner Res 9(7):1053–1064

    Article  CAS  PubMed  Google Scholar 

  41. Falcinelli C, Schileo E, Balistreri L, Baruffaldi F, Bordini B, Viceconti M, Albisinni U, Ceccarelli F, Milandri L, Toni A (2014) Multiple loading conditions analysis can improve the association between finite element bone strength estimates and proximal femur fractures: a preliminary study in elderly women. Bone 67:71–80

    Article  PubMed  Google Scholar 

  42. van den Munckhof S, Zadpoor AA (2014) How accurately can we predict the fracture load of the proximal femur using finite element models? Clin Biomech 29(4):373–380

    Article  Google Scholar 

  43. Awal R, Faisal TR (2021) Multiple regression analysis of hip fracture risk assessment via finite element analysis. J Eng Sci Med Diagn Ther 4(1):011006

    Google Scholar 

  44. Grassi L, Schileo E, Taddei F, Zani L, Juszczyk M, Cristofolini L, Viceconti M (2012) Accuracy of finite element predictions in sideways load configurations for the proximal human femur. J Biomech 45(2):394–399

    Article  CAS  PubMed  Google Scholar 

  45. Juszczyk MM, Cristofolini L, Viceconti M (2011) The human proximal femur behaves linearly elastic up to failure under physiological loading conditions. J Biomech 44(12):2259–2266

    Article  PubMed  Google Scholar 

  46. Cristofolini L, Juszczyk M, Martelli S, Taddei F, Viceconti M (2007) In vitro replication of spontaneous fractures of the proximal human femur. J Biomech 40(13):2837–2845

    Article  PubMed  Google Scholar 

  47. Doblaré M, Garcıa J, Gómez MJ (2004) Modelling bone tissue fracture and healing: a review. Eng Fract Mech 71(13–14):1809–1840

    Article  Google Scholar 

  48. Marco M, Giner E, Caeiro-Rey JR, Miguélez MH, Larraínzar-Garijo R (2019) Numerical modelling of hip fracture patterns in human femur. Comput Methods Programs Biomed 173:67–75

    Article  PubMed  Google Scholar 

  49. Keyak J, Sigurdsson S, Karlsdottir G, Oskarsdottir D, Sigmarsdottir A, Zhao S, Kornak J, Harris T, Sigurdsson G, Jonsson B (2011) Male–female differences in the association between incident hip fracture and proximal femoral strength: a finite element analysis study. Bone 48(6):1239–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Keyak J, Sigurdsson S, Karlsdottir G, Oskarsdottir D, Sigmarsdottir A, Kornak J, Harris T, Sigurdsson G, Jonsson B, Siggeirsdottir K (2013) Effect of finite element model loading condition on fracture risk assessment in men and women: the AGES-Reykjavik study. Bone 57(1):18–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Keaveny TM, Kopperdahl DL, Melton LJ III, Hoffmann PF, Amin S, Riggs BL, Khosla S (2010) Age-dependence of femoral strength in white women and men. J Bone Miner Res 25(5):994–1001

    PubMed  Google Scholar 

  52. Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM (2004) Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech 37(1):27–35

    Article  PubMed  Google Scholar 

  53. Luo Y, Ferdous Z, Leslie WD (2013) Precision study of DXA-based patient-specific finite element modeling for assessing hip fracture risk. Int J Numer Methods Biomed Eng 29(5):615–629

    Article  Google Scholar 

  54. Viceconti M, Davinelli M, Taddei F, Cappello A (2004) Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies. J Biomech 37(10):1597–1605

    Article  PubMed  Google Scholar 

  55. Wakao N, Harada A, Matsui Y, Takemura M, Shimokata H, Mizuno M, Ito M, Matsuyama Y, Ishiguro N (2009) The effect of impact direction on the fracture load of osteoporotic proximal femurs. Med Eng Phys 31(9):1134–1139

    Article  PubMed  Google Scholar 

  56. Anderson AE, Peters CL, Tuttle BD, Weiss JA (2005) Subject-specific finite element model of the pelvis: development, validation and sensitivity studies. J Biomech Eng 127(3):364–373

    Article  PubMed  Google Scholar 

  57. Barker D, Netherway DJ, Krishnan J, Hearn TC (2005) Validation of a finite element model of the human metacarpal. Med Eng Phys 27(2):103–113

    Article  CAS  PubMed  Google Scholar 

  58. Gupta S, Van Der Helm F, Sterk J, Van Keulen F, Kaptein B (2004) Development and experimental validation of a three-dimensional finite element model of the human scapula. Proc Inst Mech Eng H 218(2):127–142

    Article  CAS  PubMed  Google Scholar 

  59. Basso T, Klaksvik J, Syversen U, Foss OA (2012) Biomechanical femoral neck fracture experiments—a narrative review. Injury 43(10):1633–1639

    Article  PubMed  Google Scholar 

  60. Ariza OR (2014) A novel approach to finite element analysis of hip fractures due to sideways falls. University of British Columbia

  61. Röder F, Schwab M, Aleker T, Mörike K, Thon KP, Klotz U (2003) Proximal femur fracture in older patients–rehabilitation and clinical outcome. Age Ageing 32(1):74–80

    Article  PubMed  Google Scholar 

  62. Fajar JK, Taufan T, Syarif M, Azharuddin A (2018) Hip geometry and femoral neck fractures: A meta-analysis. J Orthop Translat 13:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  63. Liu Y-L, Hsu J-T, Shih T-Y, Luzhbin D, Tu C-Y, Wu J (2018) Quantification of volumetric bone mineral density of proximal femurs using a two-compartment model and computed tomography images. BioMed Res Int

Download references

Acknowledgements

The authors greatly appreciate the contribution of Dr. Hossein Kheirollahi in medical image processing. The authors also appreciate the help of John Carroll, a Ph.D. candidate at UL Lafayette, for the language editing service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanvir Faisal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awal, R., Ben Hmida, J., Luo, Y. et al. Study of the significance of parameters and their interaction on assessing femoral fracture risk by quantitative statistical analysis. Med Biol Eng Comput 60, 843–854 (2022). https://doi.org/10.1007/s11517-022-02516-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02516-0

Keywords

Navigation