Skip to main content

Advertisement

Log in

Convolutional neural network-based automatic classification for incomplete antibody reaction intensity in solid phase anti-human globulin test image

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The precise classification of incomplete antibody reaction intensity (IARI) in hydrogel chromatography medium high density medium solid-phase Coombs test is essential for haemolytic disease screening. However, an automatic and contactless method is required for accurate classification of IARI. Here, we present a deep ensemble learning model that integrates five different convolutional neural networks into a single model for IARI classification. A dataset, including 1628 IARI images and corresponding labels of IARI categories ((-), (1 +), (2 +), (3 +), and (4 +)), was used. We trained our model using 1302 IARIs and validated its performance using 326 IARIs. The proposed model achieved 100%, 99.4%, 99.4%, 100%, and 100% accuracies in the ( −), (1 +), (2 +), (3 +), and (4 +) categories, respectively. The results were compared with those of manual classification by immunologists (average accuracy: 99.8% vs. 88.3%, p < 0.01). Following model assistance, all three immunologists achieved increased accuracy (average accuracy: + 6.1%), with the average accuracy of junior immunologists maximum increasing by 11.3%. The time required for model classification was 0.094 s·image–1, whereas that required manually was 5.528 s·image–1. The proposed model can thus substantially improve the accuracy and efficiency of IARI classification and facilitate the automation of haemolytic disease screening equipment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vincent JLBJ, Reinhart K et al (2002) Anemia and blood transfusion in critically ill patients. JAMA 288(12):1499–1507. https://doi.org/10.1001/jama.288.12.1499

    Article  PubMed  Google Scholar 

  2. Drews RE (2003) Critical issues in hematology: anemia, thrombocytopenia, coagulopathy, and blood product transfusions in critically ill patients. Clin Chest Med 24:607–622. https://doi.org/10.1016/s0272-5231(03)00100-x

    Article  PubMed  Google Scholar 

  3. White J (2009) Pre-transfusion testing. ISBT Sci Ser 4(1):37–44. https://doi.org/10.1111/j.1751-2824.2009.01211.x

    Article  CAS  Google Scholar 

  4. Brand A (2002) Immunological aspects of blood transfusions. Transpl Immunol 10(2–3):183–190

    Article  CAS  PubMed  Google Scholar 

  5. Wilhelm DKH, Klouche M et al (1995) Impact of allergy screening for blood donors: relationship to nonhemolytic transfusion reactions. Vox Sang 69(3):217–221

    Article  CAS  PubMed  Google Scholar 

  6. Wang HM, Chen YZ, Ding SH et al (2015) A new approach to detection of incomplete antibodies using hydrogel chromatography medium. Transfus Apheres Sci 53:337–341. https://doi.org/10.1016/j.transci.2015.06.003

    Article  Google Scholar 

  7. Coombs RRA, Mourant AE, Race RR (1945) A new test for the detection of weak and incomplete Rh agglutinins. Br J Exp Pathol 26(4):255

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Race RR (1944) An “incomplete” antibody in human serum. Nature 153(3895):771–2

    Article  Google Scholar 

  9. Nedelcu E (2013) Pre-analytical issues and interferences in transfusion medicine tests. In: Accurate Results in the Clinical Laboratory: A Guide to Error Detection and Correction. Elsevier Inc., pp 273–294. https://doi.org/10.1016/B978-0-12-415783-5.00017-7

  10. Lapierre Y, Rigal D, Adam J, Josef D, Meyer F, Greber S, Drot C (1990) The gel test: a new way to detect red cell antigen-antibody reactions. Transfusion 30:109–113. https://doi.org/10.1046/j.1537-2995.1990.30290162894.x

    Article  CAS  PubMed  Google Scholar 

  11. Shastry S, Murugesan M, Bhat S (2014) Mixed field agglutination: unusual causes and serological approach. Asian J Transfus Sci 8:4. https://doi.org/10.4103/0973-6247.126680

    Article  PubMed  PubMed Central  Google Scholar 

  12. Alwar V, Devi AMS, Sitalakshmi S et al (2012) Evaluation of the use of gel card system for assessment of direct coombs test: weighing the pros and cons. Indian J Hematol Blood Transfus 28(1):15–18. https://doi.org/10.1007/s12288-011-0098-7

    Article  PubMed  Google Scholar 

  13. Liu Q, Cheng XN, Fei HX (2011) Effects of micro-magnetic field at the surface of 316L and NiTi alloy on blood compatibility. Med Biol Eng Comput 49:359–364. https://doi.org/10.1007/s11517-010-0685-z 2010/10/12

    Article  CAS  PubMed  Google Scholar 

  14. Lemm WUV, Bücherl ES (1980) Blood compatibility of polymers: in vitro and in vivo tests. Med Biol Eng Compu 18(4):521–526

    Article  CAS  Google Scholar 

  15. Plapp FV, Sinor LT, Rachel JM et al (1984) A solid phase antibody screen. Am J Clin Pathol 82(6):719–721. https://doi.org/10.1093/ajcp/82.6.719

    Article  CAS  PubMed  Google Scholar 

  16. LA Sandler SG, Rumsey DH, Novak SC (2000) A solid phase and microtiter plate hemagglutination method for pretransfusion compatibility testing. Haematologia 30(3):149–157. https://doi.org/10.1163/156855900300109143

    Article  CAS  PubMed  Google Scholar 

  17. Guignier F, Domy M, Angue M, Richaud P, Chatelain P (1988) Comparison between a solid-phase low-ionic-strength solution antiglobulin test and conventional low-ionic-strength antiglobulin test: assessment for the screening of antierythrocyte antibodies. Vox Sang 55(1):30–34

    Article  CAS  PubMed  Google Scholar 

  18. Sigdel A, Chalise G, Bolideei M et al (2021) Comparison between the manual method of indirect coombs via gel technology and solid phase red cell adherence. Maedica (Bucur) 16:200–206. https://doi.org/10.26574/maedica.2021.16.2.200

    Article  Google Scholar 

  19. Cate JC IV, Reilly N (1999) Evaluation and implementation of the gel test for indirect antiglobulin testing in a community hospital laboratory. Arch Pathol Lab Med. 123(8):693–697

    Article  PubMed  Google Scholar 

  20. Aristov A, Nosova E (2017) Method of evaluation of process of red blood cell sedimentation based on photometry of droplet samples. Med Biol Eng Comput 55:621–630. https://doi.org/10.1007/s11517-016-1542-5 2016/07/13

    Article  PubMed  Google Scholar 

  21. Chen Y, Wang M, Ding S et al (2019) A new reliable test for crossmatching: microplate hydrogel immunoassay technology. Transfus Med 29(5):344–350. https://doi.org/10.1111/tme.12631

    Article  CAS  PubMed  Google Scholar 

  22. Roman L, Armstrong B, Smart E (2020) Principles of laboratory techniques. ISBT Sci Ser 15:81–111. https://doi.org/10.1111/voxs.12591

    Article  Google Scholar 

  23. Er Saw P, Jiang S (2020) The significance of interdisciplinary integration in academic research and application. BIO Integration 1:2–5. https://doi.org/10.15212/bioi-2020-0005

    Article  Google Scholar 

  24. Liu C, Jia D, Liu Z (2020) Artificial intelligence (AI)-aided disease prediction. BIO Integration 1:130–136

    Article  Google Scholar 

  25. Zhang K, Liu X, Shen J et al (2020) Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography. Cell 181:1423-1433.e1411. https://doi.org/10.1016/j.cell.2020.04.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Das N, Hussain E, Mahanta LB (2020) Automated classification of cells into multiple classes in epithelial tissue of oral squamous cell carcinoma using transfer learning and convolutional neural network. Neural Netw 128:47–60. https://doi.org/10.1016/j.neunet.2020.05.003

    Article  PubMed  Google Scholar 

  27. Tessema AW, Mohammed MA, Simegn GL et al (2021) Quantitative analysis of blood cells from microscopic images using convolutional neural network. Med Biol Eng Comput 59:143–152. https://doi.org/10.1007/s11517-020-02291-w

    Article  PubMed  Google Scholar 

  28. Mohanty SP, Hughes DP, Salathe M (2016) Using deep learning for image-based plant disease detection. Front Plant Sci 7:1419. https://doi.org/10.3389/fpls.2016.01419

    Article  PubMed  PubMed Central  Google Scholar 

  29. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90. https://doi.org/10.1145/3065386

    Article  Google Scholar 

  30. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings

  31. He K, Zhang X, Ren S et al (2016) Deep residual learning for image recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition

  32. Szegedy C, Vanhoucke V, Ioffe S et al (2016) Rethinking the inception architecture for computer vision. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition

  33. Huang G, Liu Z, Van Der Maaten L et al (2017) Densely connected convolutional networks. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017

  34. Woo S, Park J, Lee JY et al (2018) CBAM: Convolutional block attention module. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

  35. Demrekler M, Altncay H (2002) Plurality voting-based multiple classifier systems: statistically independent with respect to dependent classifier sets. Pattern Recogn 35:2365–2379. https://doi.org/10.1016/S0031-3203(01)00227-8

    Article  Google Scholar 

  36. Mu X, Watta P, Hassoun MH (2009) Analysis of a plurality voting-based combination of classifiers. Neural Process Lett 29(2):89–107. https://doi.org/10.1007/s11063-009-9097-1

    Article  Google Scholar 

  37. Özgür A ÖL, Güngör T (2005) Text categorization with class-based and corpus-based keyword selection. International Symposium on Computer and Information Sciences Springer, Berlin, Heidelberg; 606–615

  38. Yang Y LX (1999) A re-examination of text categorization methods. Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval; 42–49

  39. Lewis DD, Schapire RE, Callan JP, Papka R (1996) Training algorithms for linear text classifiers. Proceedings of the 19th annual international ACM SIGIR conference on Research and development in information retrieval; 298–306

  40. Harman DK (1995) Overview of the third text retrieval conference (TREC-3). DIANE Publishing

  41. Phoungphol PZY, Zhao Y (2012) Robust multiclass classification for learning from imbalanced biomedical data. Tsinghua Sci Technol 17(6):619–628

    Article  Google Scholar 

  42. Hardin PJ, Shumway JM (1997) Statistical significance and normalized confusion matrices. Photogramm Eng Remote Sensing 63(6):735–9

    Google Scholar 

  43. Kingma DP, Ba JL (2015) Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings

  44. Grandini M BE, Visani G (2020) Metrics for multi-class classification: an overview. arXiv preprint arXiv; 2008:05756

  45. Zhao X, Wang X, Xia W et al (2020) A cross-modal 3D deep learning for accurate lymph node metastasis prediction in clinical stage T1 lung adenocarcinoma. Lung Cancer 145:10–17. https://doi.org/10.1016/j.lungcan.2020.04.014

    Article  PubMed  Google Scholar 

  46. Düntsch I, Gediga G (2019) Confusion matrices and rough set data analysis. J Phys: Conf Ser 1229(1):012055. https://doi.org/10.1088/1742-6596/1229/1/012055

    Article  Google Scholar 

  47. Hu R, Zhou S, Liu Y et al (2019) Margin-based pareto ensemble pruning: an ensemble pruning algorithm that learns to search optimized ensembles. Comput Intell Neurosci 2019:7560872. https://doi.org/10.1155/2019/7560872

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cruz RMO, Sabourin R, Cavalcanti GDC (2018) Dynamic classifier selection: recent advances and perspectives. Information Fusion 41:195–216. https://doi.org/10.1016/j.inffus.2017.09.010

    Article  Google Scholar 

  49. Zhang C-X, Zhang J-S (2011) A survey of selective ensemble learning algorithms. Chin J Comput 34(8):1399–1410

    Article  Google Scholar 

  50. Y L (2012) New discoveries in balanced ensemble learning. The 2012 International Joint Conference on Neural Networks (IJCNN); IEEE, 2012:1–8

  51. Huang J, Gao J (2017) An ensemble simulation approach for artificial neural network: an example from chlorophyll a simulation in Lake Poyang, China. Ecol Inform 37:52–58. https://doi.org/10.1016/j.ecoinf.2016.11.012

    Article  Google Scholar 

  52. Weigel AP, Liniger MA, Appenzeller C (2008) Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? Q J R Meteorol Soc 134:241–260. https://doi.org/10.1002/qj.210

    Article  Google Scholar 

  53. Hacker JP, Lei L (2015) Nudging, ensemble, and nudging ensembles for data assimilation in the presence of model error. Mon Weather Rev 143:2600–2610. https://doi.org/10.1175/mwr-d-14-00295.1

    Article  Google Scholar 

  54. Yoo JH, Kang I-S (2005) Theoretical examination of a multi-model composite for seasonal prediction. Geophys Res Lett 32: n/a-n/a. https://doi.org/10.1029/2005gl023513

  55. Zador Paul LD (2013) Evaluating perturbation impact on key travel models, census statistical disclosure control research project 1. westat

  56. Wu H, Levinson D (2021) The ensemble approach to forecasting: a review and synthesis. Transport Res Part C: Emerg Technol 132:103357. https://doi.org/10.1016/j.trc.2021.103357

    Article  Google Scholar 

  57. Webb GIZZ (2004) Multistrategy ensemble learning: reducing error by combining ensemble learning techniques. IEEE Trans Knowl Data Eng 16(8):980–991

    Article  Google Scholar 

  58. Dietterich TG (2000) An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach Learn 40(2):139–157

    Article  Google Scholar 

  59. Lee B (1998) Arcing classifiers. Ann Stat 26(3):801–849

    Google Scholar 

  60. Elder SLaJF (1997) Bundling heterogeneous classifiers with advisor perceptrons, tech report 97–1, Elder Research, Charlottesville

  61. Margineantu DDTG (1997) Pruning adaptive boosting. ICML 97:211–218

    Google Scholar 

  62. Kamiya R SK, Hotta K (2019) Ensemble of training models for road and building segmentation. 2019 Digital image computing: techniques and applications (DICTA); IEEE, 2019:1–6

  63. Lin M CQ, Yan S (2013) Network in network. arXiv preprint arXiv; 1312.4400

  64. Hu J SL, Sun G (2018) Squeeze-and-excitation networks. Proceedings of the IEEE conference on computer vision and pattern recognition; 7132–7141

  65. Zhang T, Zhang X (2022) A polarization fusion network with geometric feature embedding for SAR ship classification. Pattern Recogn 123:108365. https://doi.org/10.1016/j.patcog.2021.108365

    Article  Google Scholar 

  66. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2016) Learning deep features for discriminative localization. Proceedings of the IEEE conference on computer vision and pattern recognition; 2921–2929

  67. Jarrett K KK, Ranzato MA, LeCun Y (2009) What is the best multi-stage architecture for object recognition? IEEE 12th international conference on computer vision; 2146–2153

  68. Yang J, Yu K, Gong Y, Huang T (2009) Linear spatial pyramid matching using sparse coding for image classification. IEEE Conference on computer vision and pattern recognition; 1794–1801

  69. Serre T WL, Poggio T (2005) Object recognition with features inspired by visual cortex. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05); 2: 994–1000

  70. Xue G, Liu S, Ren L et al (2022) Forecasting the subway passenger flow under event occurrences with multivariate disturbances. Exp Syst Appl 188:116057. https://doi.org/10.1016/j.eswa.2021.116057

    Article  Google Scholar 

  71. Chen F, Tsou JY (2021) DRSNet: Novel architecture for small patch and low-resolution remote sensing image scene classification. Int J Appl Earth Observ Geoinform 104:102577. https://doi.org/10.1016/j.jag.2021.102577

    Article  Google Scholar 

  72. Boureau YL, Bach F, LeCun Y, Ponce J (2010) Learning mid-level features for recognition. IEEE computer society conference on computer vision and pattern recognition; 2559–2566

  73. Yang L, Zhang F, Wang PS-P et al (2022) Multi-scale spatial-spectral fusion based on multi-input fusion calculation and coordinate attention for hyperspectral image classification. Pattern Recogn 122:108348. https://doi.org/10.1016/j.patcog.2021.108348

    Article  Google Scholar 

  74. Yu W, Xu H (2022) Co-attentive multi-task convolutional neural network for facial expression recognition. Pattern Recogn 123:108401. https://doi.org/10.1016/j.patcog.2021.108401

    Article  Google Scholar 

  75. Lee S, Kang Q, Madireddy S, Balaprakash P, Agrawal A, Choudhary A, Liao WK (2019) Improving scalability of parallel CNN training by adjusting mini-batch size at run-time. 2019 IEEE International Conference on Big Data (Big Data); 830–839

  76. Kandel I, Castelli M (2020) The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset. ICT Express 6:312–315. https://doi.org/10.1016/j.icte.2020.04.010

    Article  Google Scholar 

  77. Bengio Y (2012) Practical recommendations for gradient-based training of deep architectures. Neural networks: Tricks of the trade; 437–478

  78. Xu H vGJ, Xiong D, Liu, Q (2020) Dynamically adjusting transformer batch size by monitoring gradient direction change. arXiv preprint arXiv; 2005.02008

  79. Sutskever I, Martens J, Dahl G, Hinton G (2013) On the importance of initialization and momentum in deep learning. International conference on machine learning; 1139–1147

  80. Radiuk PM (2017) Impact of training set batch size on the performance of convolutional neural networks for diverse datasets. Inf Technol Manag Sci 20. https://doi.org/10.1515/itms-2017-0003

  81. Masters D LC (2018) Revisiting small batch training for deep neural networks. arXiv preprint arXiv; arXiv preprint arXiv

Download references

Acknowledgements

We thank the Wiley Editing Services for editorial assistance.

Funding

This work was supported by the Development Program of Guangdong Province [grant number: 2019B010152001]; the Key Research and Development Program of Jiangsu [grant number: BE2021663]; the Research Fund of Jihua Laboratory [grant number: X190171TD190]; the Special fund for high-tech industrialisation of science and technology cooperation between Jilin Province and Chinese Academy of Sciences [grant number: 2020SYHZ0025]; the National Natural Science Foundation of China [grant number: 81871439]; and the Shandong Province Department of Science and Technology [grant number: ZR2020QF019].

Author information

Authors and Affiliations

Authors

Contributions

Xin Gao designed the study; HongMei Wang performed data collection; HongMei Wang ShengBao Duan, and YuJue Wang labelled data; and KeQing Wu performed the research and wrote the paper.

Corresponding authors

Correspondence to HongMei Wang or Xin Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 75.5 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Duan, S., Wang, Y. et al. Convolutional neural network-based automatic classification for incomplete antibody reaction intensity in solid phase anti-human globulin test image. Med Biol Eng Comput 60, 1211–1222 (2022). https://doi.org/10.1007/s11517-022-02523-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02523-1

Keywords