Skip to main content

Advertisement

Log in

Hybrid multi-kernel SVM algorithm for detection of microaneurysm in color fundus images

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Diabetic retinopathy (DR) is a chronic disease that may cause vision loss in diabetic patients. Microaneurysms which are characterized by small red spots on the retina due to fluid or blood leakage from the weak capillary wall often occur during the early stage of DR, making screening at this stage is essential. In this paper, an automatic screening system for early detection of DR in retinal images is developed using a combined shape and texture features. Due to minimum number of hand-crafted features, the computational burden is much reduced. The proposed hybrid multi-kernel support vector machine classifier is constructed by learning a kernel model formed as a combination of the base kernels. This approach outperforms the recent deep learning techniques in terms of the evaluation metrics. The efficiency of the proposed scheme is experimentally validated on three public datasets — Retinopathy Online Challenge, DIARETdB1, MESSIDOR, and AGAR300 (developed for this study). Studies reveal that the proposed model produced the best results of 0.503 in ROC dataset, 0.481 in DIARETdB1, and 0.464 in the MESSIDOR dataset in terms of FROC score. The AGAR300 database outperforms the existing MA detection algorithm in terms of FROC, AUC, F1 score, precision, sensitivity, and specificity which guarantees the robustness of this system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. International diabetes federation Diabetes atlas (2013) Brussels, Belgium, 6th edn. Available: https://www.idf.org/e-library/epidemiology-research/diabetes-atlas/19-atlas-6th-edition.html

  2. Lian S, Li L, Lian G, Xiao X, Luo Z, Li S (2021) A global and local enhanced residual U-net for accurate retinal vessel segmentation. In IEEE/ACM Transactions on Computational Biology and Bioinformatics 3(01):852–862

    Article  Google Scholar 

  3. Taylor HR, Keeffe JE (2001) World blindness: a 21st century perspective. British Jour Ophthalmology 85(3):261–266

    Article  CAS  Google Scholar 

  4. Zou B, Dai Y, He Q, Zhu C, Liu G, Su Y, Tang R (2021) Multi-label classification scheme based on local regression for retinal vessel segmentation. In IEEE/ACM Transactions on Computational Biology and Bioinformatics 3(01):2586–2597

    Article  Google Scholar 

  5. Wang S, Tang HL, Al Turk LI, Hu Y, Sanei S, Saleh GM, Peto T (2017) Localizing microaneurysm in fundus image through singular spectrum analysis. IEEE Trans Biomed Eng 64(5):46–53

    CAS  Google Scholar 

  6. Zhou W, Wu C, Chen D, Yi Y, Du W (2017) Automatic microaneurysm detection using the sparse principal component analysis-based unsupervised classification method. IEEE Access 5:2563–2572

    Article  Google Scholar 

  7. Veiga D, Martins N, Ferreira M, Monteiro J (2017) Automatic microaneurysm detection using laws texture masks and support vector machines. Comput Methods Biomech Biomed Eng: Imaging Vis 6(4):405–416

    Google Scholar 

  8. Habib MM, Welikala RA, Hoppe A, Owen CG, Rudnicka AR, Barman SA (2017) Detection of microaneurysms in retinal images using an ensemble classifier. Inform Med 9:44–57

    Google Scholar 

  9. Orlando JI, Prokofyeva E, Fresno M, Blaschko MB (2018) An ensemble deep learning based approach for red lesion detection in fundus images. Comp Methods and Prog in Biomed 153:115–127

    Article  Google Scholar 

  10. Chudzik P, Majumdar S, Caliva F, Al-Din B, Hunter A (2018) Microaneurysm detection using fully convolutional neural networks. Comput Methods Programs Biomed 158:185–192

    Article  PubMed  Google Scholar 

  11. Ling Dai, Liang Wi, and Huating Li, “A deep learning system for detecting diabetic retinopathy across the disease spectrum,” Nature Communications, 10–1038/s41467021–23458–5

  12. Zhao G, Fu D, Yang T (2021) A deep learning method for microaneurysms segmentation in fundus images. In: Jia Y., Zhang W., Fu Y., Yu Z., Zheng S. (eds) Proceedings of 2021 Chinese Intelligent Systems Conference. Lecture Notes in Electrical Engineering, vol 805. Springer, Singapore. https://doi.org/10.1007/978-981-16-6320-8_79.

  13. Eftekhari N, Pourreza H, Masoudi M, Ghiasi-Shirazi K, Saeedi E (2019) “Microaneurysm detection in fundus images using a two-step convolutional neural network”, Bio Medical Engineering Online, vol. 18,no. 67.

  14. Dashtbozorg B, Zhang J, Huang F, HaarRomeny BM (2018) Retinal microaneurysms detection using local convergence index features. IEEE Trans Image Process 27(7):3300–3315

  15. Derwin DJ, Selvi ST, Singh OJ (2019) Discrimination of microaneurysm in color retinal images using texture descriptors. SIViP 7(5):1–8

    Google Scholar 

  16. Kauppi T, Kalesnykiene V, Kamarainen JK, Lensu L, Sorri I, Raninen A, Voutilainen R, Uusitalo H, Kalviainen H, Pietila J (2007) “The DIARETDB1 diabetic retinopathy database and evaluation protocol,” Proceedings of the British Machine Conference, BMVA Press, pp. 15.1–15.10.

  17. Decencière E, Zhang X, Cazuguel G, Laÿ B, Cochener B (2014) “Feedback on a publicly distributed image database: the messidor database”, Image Analysis and Stereology, International Society for Stereology, pp.231–234. ff10.5566/ias.1155ff. ffhal-01082570f.

  18. http://webeye.ophth.ulowa.edu/roc/var/www/university of Iowa, Retinopathy Online Challenge: 2007. Accessed 2007

  19. Derwin DJ, Selvi ST, Singh OJ (2019) Secondary observer system for detection of microaneurysms in fundus images using texture descriptors. Journal of Dig Imag 32(1):1–9

    Article  Google Scholar 

  20. Imran U, Alnejalli KA (2020) Intelligent automated detection of microaneurysms in fundus images using feature-set tuning. IEEE Access 8:65187–65196

    Article  Google Scholar 

  21. Joshi S, Karule PT (2020) Mathematical morphology for microaneurysm detection in fundus images. Eur J Ophthalmol 30(5):1135–1142

    Article  PubMed  Google Scholar 

  22. Manjaramkar A, Kokare M (2017) Statistical geometrical features for microaneurysm detection. J Digit Imag 31(2):224–234

    Article  Google Scholar 

  23. Romero RR, Carballido JM, Capistran JH, Uribe-valencia LJ (2015) ‘A method to assist in the diagnosis of early diabetic retinopathy: image processing applied to detection of microaneurysms in fundus images.’ Computerized Med Imag Graph 44:41–53

    Article  Google Scholar 

  24. Seoud L, Hurtut T, Chelbi J (2016) Red lesion detection using dynamic shape features for diabetic retinopathy screening. IEEE Trans Med Imag 35(4):1116–1126

    Article  Google Scholar 

  25. Mizutani A, Muramatsu C, Hatanaka Y, Suemori S, Hara T, Fujita H (2009) Automated microaneurysm detection method based on double ring filter in retinal fundus images. Proc. SPIE 7260, Medical Imaging 2009: Computer-Aided Diagnosis, 72601N. https://doi.org/10.1117/12.813468

  26. Aravind C, Ponnibala M, Vijayachitra S (2013) Automatic detection of microaneurysms and classification of diabetic retinopathy images using SVM technique. Int J Comput Appl 11:18–22

  27. Sehirli E, Turan MK, Dietzel A (2015) Automatic detection of microaneurysms in RGB retinal fundus images. Int J Sci Technol Res 1(8):1–7

  28. Haloi M (2016) “Improved microaneurysm detection using deep neural networks”, Available: arXiv:1505.04424.

  29. Cao W, Czarnek N, Shan J, Li L (2018) Microaneurysm detection using principal component analysis and machine learning methods. IEEE Trans Nanobiosci 17(3):191–198

    Article  Google Scholar 

  30. Ren F, Cao P, Li W, Zhao D, Zaiane O (2017) Ensemble based adaptive over-sampling method for imbalanced data learning in computer aided detection of microaneurysm. Computerized Med Imag Graph 55:54–67

    Article  Google Scholar 

  31. Jeba Derwin, Priestly Shan, “Diabetic retinopathy- fundus image dataset (AGAR300)”, IEEE Dataport, Nov 2020. https://doi.org/10.21227/Fsnq-Tn19

  32. Adal KM, Sidibe D, Ali S, Chaum E, Karnowski TP, Meriaudeau F (2014) Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning. Comp Methods and Programs in Biomed 114(1):1–10

    Article  Google Scholar 

  33. Derwin J, Selvi T, Singh J, Shan P (2020) A novel automated system of discriminating microaneurysms in fundus images. Biomed Signal Process Control 58:1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jeba Derwin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derwin, D.J., Shan, B.P. & Singh, O.J. Hybrid multi-kernel SVM algorithm for detection of microaneurysm in color fundus images. Med Biol Eng Comput 60, 1377–1390 (2022). https://doi.org/10.1007/s11517-022-02534-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02534-y

Keywords

Navigation