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Abstract 
Computer-aided rational vaccine design (RVD) and synthetic pharmacology are rapidly developing fields that leverage exist-
ing datasets for developing compounds of interest. Computational proteomics utilizes algorithms and models to probe proteins 
for functional prediction. A potentially strong target for computational approach is autoimmune antibodies, which are the 
result of broken tolerance in the immune system where it cannot distinguish “self” from “non-self” resulting in attack of its 
own structures (proteins and DNA, mainly). The information on structure, function, and pathogenicity of autoantibodies may 
assist in engineering RVD against autoimmune diseases. Current computational approaches exploit large datasets curated 
with extensive domain knowledge, most of which include the need for many resources and have been applied indirectly to 
problems of interest for DNA, RNA, and monomer protein binding. We present a novel method for discovering potential 
binding sites. We employed long short-term memory (LSTM) models trained on FASTA primary sequences to predict protein 
binding in DNA-binding hydrolytic antibodies (abzymes). We also employed CNN models applied to the same dataset for 
comparison with LSTM. While the CNN model outperformed the LSTM on the primary task of binding prediction, analysis 
of internal model representations of both models showed that the LSTM models recovered sub-sequences that were strongly 
correlated with sites known to be involved in binding. These results demonstrate that analysis of internal processes of LSTM 
models may serve as a powerful tool for primary sequence analysis.
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1  Introduction

Computational proteomics utilizes algorithms and models 
to probe proteins for functional prediction. Primary research 
in this area is often devoted to computer-aided rational vac-
cine design (RVD) and synthetic pharmacology for effective 
drug design. A potentially strong target for such a compu-
tational approach is autoimmune antibodies, which are the 
result of broken tolerance in the immune system where it 
cannot distinguish “self” from “non-self,” resulting in attack 
of its own structures (proteins and DNA, mainly). Despite 
decades of research, much remains poorly understood about 

the mechanisms underlying autoantibody function and bind-
ing processes.

Considered to be a hallmark of lupus disease, anti-DNA 
antibody is found in 70–90% of patients with SLE (par-
ticularly in those with nephritis), and measurements of its 
levels in patients’ plasma are used to follow the course of 
disease. However, because anti-DNA antibody has been 
shown to be both hydrolytic and nephritogenic in a limited 
number of experimental and clinical studies, and that it 
also appears before the flare, it is suggested that it may 
serve as a strong flare predictor [2, 3, 38]. The impor-
tant role of anti-DNA antibody is supported by studies in 
mouse models of nephritogenic lupus in which anti-DNA 
antibodies were found [31] as well as by the findings of 
[36] and [34]. The chemical structure and processes under-
lying autoantibodies remain poorly understood. [14, 25, 
31] isolated anti-DNA and confirmed their DNA catalytic 
activities. However, only a small number of anti-DNA 
binding antibodies’ binding sites have been determined. 
Almost an entire decade of X-ray crystallographic studies 
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performed by [9] combined with the most recent data gen-
erated by [8, 20, 37] observed that tyrosine and tryptophan 
residues create a hydrophobic pocket within the side chain 
of the antibody [24, 26]. Thus, oligo-thymidine pentamer 
enters the hydrophobic pocket between tyrosine and tryp-
tophane from anti-DNA autoantibody in Fab fragment, 
where they bind to DNA, starting hydrolytic cleavage as a 
newly known modality of activity in autoimmune pathol-
ogy (abzyme activity).

Wet-lab sequencing and X-ray crystallography are costly 
and time consuming, requiring expertise on each particular 
antibody. Computational approaches, which model existing 
data to generate novel predictions, can serve to narrow the 
field of possible candidates that may then be lab tested. Such 
models have become a standard tool in -omics research, with 
significant contributions to synthetic protein design and dis-
covery. Recently, deep learning models have far exceeded 
earlier computational methods in complex feature detection 
from large datasets, as in the Large Scale Visual Recognition 
Challenge (ILSVRC) and machine-generated text models 
like GPT-2 [29, 32]. The unique ability of deep learning 
networks to define and manipulate important nonlinear fea-
tures allows the possibility for such models to provide more 
insightful context than wet-lab and other traditional methods 
could alone. In recent years, deep learning has been applied 
to many areas within computational proteomics including 
protein folding, subcellular localization, and binding motif 
prediction, classification, and detection [17, 33, 40]. Indeed, 
nearly all recent computational approaches involve state of 
the art machine-learning including natural language process-
ing (NLP) techniques, such as encoder-decoder networks and 
recurrent neural networks (RNNs), support vector machines 
(SVM), convolutional neural networks (CNNs), and use-case 
specific optimization algorithms, etc. [1, 21–23, 30, 41].

Most approaches to computational proteomics to date are 
heavily dependent on hand annotated datasets, supplemen-
tary feature input, require extensive background information, 
and/or are most frequently applied to large generic datasets. 
It is often the case in novel fields of interest that only lim-
ited, smaller datasets, lacking extra domain knowledge (i.e., 
evolutionary, MSA, tertiary structure data) beyond primary 
sequence, are available. To date, only a handful of studies 
have applied deep learning to primary sequence alone to 
perform protein class — though not binding site — predic-
tion [16, 35]. With respect to binding site prediction, DNA 
and RNA specificities have been achieved using CNN, RNN, 
and hand-tailored MSA algorithms to other datasets (namely 
TFB and RNAB proteins) by [1, 21, 22]. However, these 
studies used both microarray and sequencing data. Most 
recently, [15, 44] achieved moderate accuracy in protein-
protein interaction interface residue pairs prediction, but 
used supplementary data and hand-tailored algorithms for 
inference.

Thus to date, no computational studies have reported suc-
cessful binding-site prediction from primary sequence alone. 
As noted, in the case of most novel topics of interest without 
supplementary domain knowledge, a model capable of ana-
lyzing primary sequence alone would be highly useful. Here 
we introduce a novel approach to achieve this goal based on 
analysis of hidden activation weights in RNNs, a family of 
deep learning models that include a form of memory, mak-
ing them well adapted to analyzing sequential data. In par-
ticular, we used a class of RNNs — long short-term memory 
networks, or LSTMs — which include a memory cell to 
represent long-term memory allowing for sequential feature 
detection of position-specific input arrays [10]. Another type 
of RNN, GRU, combines input and forget gates from the 
LSTM in a single step, this exposes the whole state at each 
time step. In the LSTM, the degree to which each states’ 
information is released to the surrounding nodes is more 
controlled by the separation of these gates. The rationale 
behind using LSTM is to have a better fine-tuned release of 
each state, which should capture residue-to-residue inter-
actions better than the GRU. In summary, the GRU mixes 
each input (i.e., residue) with the rest of the network which 
could confound the downstream position-specific binding 
site extraction [6]. LSTMs are well adapted to learning from 
biological sequences, such as proteins, because of their abil-
ity to analyze sequences at multiple levels including whole 
protein, residue-to-residue interactions, and individual 
amino acids. More specifically, LSTMs are suited for the 
binding domain problem because proteins, presented as a 
primary sequence, can be evaluated beyond their linear rep-
resentation for features across the primary space that might 
signify binding in later tertiary structures.

1.1 � Current approach

Here, we trained several LSTM-based models to classify 
antibody primary sequences as DNA-binding or non-binding 
and then evaluated the model’s hidden-states to assess the 
potential of specific sub-sequences and residues as bind-
ing sites. We designed our deep learning model to be fully 
compatible with the protein data warehouse Uniprot [7]. 
Since several previous efforts for binding specificities have 
employed both CNN and RNN models, we compared vari-
ants of CNN-based models of similar complexity on the 
same data. The novel methodology added to the parameter-
limited networks used is the internal hidden state analysis. 
[16] used a similar LSTM model to predict phylogenetically 
distinct protein families by sequence alone and again in [15] 
predicted residue specificities but required more than just 
primary sequence data. Our work takes a similar approach 
in model architecture, making use of as few parameters as 
possible from only primary sequences, for the anti-DNA 
antibody problem set which is lacking in the amount of 
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biological data available. We directly apply this model to 
further the implications of the hydrolytic activity exerted on 
DNA by autoantibodies of various length and phylogeneti-
cally distinct protein families (e.g., IGG, IGM). We assessed 
the applicability of our technique to a small, unascertained 
problem set to directly elucidate the anti-DNA autoantibody 
phenomena in a way that allows insight into the model’s 
inference process. To our knowledge, this work is the first 
application of small LSTM and CNN models to elucidate 
position-specific residues related to binding function from 
primary sequence alone and is the first computational model 
for anti-DNA antibodies.

In both LSTM and CNN cases, we use two models of 
different-sized trainable parameters to predict binding from 
primary sequences to better evaluate the use of limited 
parameters. We evaluated each of the models with regard 
to binding prediction accuracy. In addition, we evaluated 
the sub-sequences indicated by the hidden activations in the 
different models for agreement with previously identified 
binding sites. The resultant code can be found at https://​
github.​com/​mpcrl​ab/​Antib​odyBi​nding​Predi​ction.

2 � Related work

Although X-ray crystallography is capable of elucidating 
the DNA binding domain in an antibody, it is typically 
expensive and time consuming since only one highly reli-
able protein can be processed at a time. Research in this 
area, spanning the last several decades, has not achieved a 
comprehensive understanding of the antibody binding motif 
involved in DNA recognition and later hydrolytic activity. 
The most extensive wet-lab work has been completed by [8, 
20, 37] for a few proteins, both synthetic and de novo. DNA-
binding motif prediction for other target molecules has been 
achieved in several early works using MSA [27], physics-
based simulations [11], and kernel based algorithms [19]. 
Deep learning–based approaches most often include using 
RNNs as in [15, 16, 18, 23, 30, 35, 44]. Some other recent 
works include combinations of CNN and RNN models [1, 
21, 22, 43]. It is still unclear in the body of related works 
whether CNN, RNN, or combination models are more suited 
for modelucar interaction prediction. All of these studies 
depended on large datasets, supplementary data, and/or mil-
lions of model parameters.

Some recent work suggests that protein primary sequence 
may not be sufficiently high-dimensional enough for the suc-
cessful application of deep learning techniques [42], which 
may account for the lack of sequence-only approaches in the 
literature. Their approach suggests including features beyond 
primary sequence in the goal of capturing predictions from a 
higher-dimensional representation of the underlying molecu-
lar biology. Nonetheless, we demonstrate here that primary 

sequence is high-dimensional enough for deep learning 
applications to predict binding-site with some degree of 
accuracy. Similar works in [1] DNA/RNA position-specific 
sites for TFB proteins were extracted using a brute-force 
approach by mutating each possible codon in areas of inter-
est, determined by deep learning models, and accessing 
the respective binding score. This type of approach suf-
fers from combinatorial explosion when applied to protein 
binding-sites as there are 27 possible residues (instead of 
four codons). This problem is exacerbated by variable pro-
tein length, which can often reach 2000 residues in length 
and shown to be problematic in the most similar works by 
[15]. [4, 12, 13, 39, 43] are similary unapplicable since they 
apply to gentic code which, as mentioned, is a smaller search 
space. This is demonstrated by these works, with the excep-
tion of [43], being classifyable with shallow-learning, or 
less non-linear to deep learning, approaches (e.g., anomoly 
detection, clustering, autoencoding, graph networks). Nota-
bly, the works of [28] predict DNA binding proteins from 
primary sequence alone using a LSTM that is given CNN 
feature vectors created from images of primary sequence, 
but the authors do not indicate the position-specific residues 
of the predicted binding, only whether the whole protein 
will bind or not. In the work presented here, we demon-
strate a methodology for predicting which residues create 
the binding-site in the predicted binding proteins. of ante-
cedent works are their ability to analyze giant datasets and 
high fidelity in their own applications. However, these works 
cannot be adapted to the problem presented in this work and 
others like it due to the limited domain information availa-
ble, unreliability for sequence-only analysis, and completely 
forgo hidden state interpretation.

3 � Methods

3.1 � Dataset

An anti-DNA antibody dataset was curated directly from the 
protein data warehouse, Uniprot.org, using the query key-
words: “Immunoglobuline” and “DNA-binding” in the man-
ually annotated and reviewed records. This method supplied 
primary sequences of around 780 DNA binding–related anti-
bodies. The counter class was sourced the same way with 
the exclusionary keyword “NOT+DNA-binding,” which 
resulted in 1,267 antibodies. The data was first inspected for 
basic discrepancies between binding and non-binding anti-
bodies by computing the amino acid frequency and sequence 
length between these two classes.

The generated dataset was found to include proteins of 
MHC and T-cell type that are not antibodies. This reflects 
the fact that Uniprot pulls all proteins associated with a key-
word, but not exclusively; meaning, the sequences originally 
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retrieved relate to antibody function but may not be antibod-
ies themselves. To create an unambiguous class of antibod-
ies, we queried the generated data removing any proteins 
associated with MHC and T-cell keywords. After excluding 
these, only 75 antibody DNA-binding proteins remained. 
Therefore, we collected extra samples manually from the 
Protein DataBank website [5] using keywords, “DNA-
binding” and “Antibodies.” Thirty-three test sequences were 
hand-selected according to relevance and reliability. After 
removing duplicates and sequences with lengths less than 50 
or greater than 2000 amino acids long, among all datasets, 
81 binding antibodies were retrieved. The sequence lengths 
were constrained due to a two-fold rationale. First, including 
the few proteins greater than 2000 residues would create a 
batch of input that would be padded to a much larger max 
length, increasing the computations necessary for not only 
the LSTM but subsequent hidden state analysis. Secondly, 
proteins of residue lengths outside of 50–2000 were few and 
regarded as outliers since they likely misrepresent the gen-
eral molecular structure of most anti-DNA binding antibod-
ies. To downsample the much larger non-binding class into a 
generally representative dataset, we use principal component 
analysis (PCA) on multiple randomly selected samples of 
81 proteins until the PCA more closely resembles the bind 
sequences’ PCA (Fig. 1). Resemblance was determined by 
the operator matching the general shape of the PCAs as the 
random samples were selected. The process of sampling 
was necessary because some random samples occasionally 
(approximately three out of 20 samples) resulted in PCAs 
with a different shape, likely due to a small random sample 
of the data sharing alternate principal components than the 
main dataset. This dataset was split into training and valida-
tion by randomly sampling and checking for sequence length 
balance. Again, random samples from a small dataset can 
have the chance of pulling a non-representative sample, so 
multiple sampling was done to reject any subsamples that by 
chance, had an obvious skewed representation of the overall 
sequence lengths (Fig. 2). Finally, this secondary dataset 
consisted of 61 sequences reserved for training and 20 for 
validation for the LSTM and CNN binding inference.

3.2 � Pre‑processing

3.3 � Data augmentation

The downsampled dataset of 81 sequences in each class 
was converted to one-hot images and augmented in two 
ways. As an LSTM evaluates a sequence, it uses recur-
rent information to update the hidden state in a way 
that leads to a correct classification. The hyper-variable 
domain (HVD), Fab fragment, is most likely to be involved 
in ligand binding recognition in antibodies and is often 

written first in FASTA sequences. Since the hidden state 
is lacking recurrent information in the beginning of each 
sequence analysis, the hidden state values are often much 
larger than later time steps in the data image. Therefore, to 
preserve the hidden state’s attention to the important HVD, 
we reversed all sequences. Data was then augmented with 
horizontal flips to increase the amount of data available 
since the one-hot encoding was arbitrarily created from 
left to right. Augmentation did not significantly increase 
model performance, but may have increased the robustness 
of the hidden state evaluation.

3.4 � Binding prediction

3.4.1 � LSTM prediction

With a total of 244 training sequences and 80 validation 
sequences, the model was trained with one LSTM layer of 
300 hidden nodes, a 50% dropout layer, and a 2-node fully 
connected layer for 200 epochs with a batch size of one. 
The preprocessed data, now with each residue position rep-
resented as a row and the corresponding residue letter as 
a column, is given to the LSTM as input. The hidden and 
cell state vectors are each initialized with zero values and a 
shape of 1x1x200. The LSTM reads in the protein at each 
timestep, or row, along with previous hidden state, passing 
it to four internal gates. Each gate has a corresponding set 
of weights that are matrix multiplied by the input and hid-
den vectors. The feature maps output by each gate are then 
combined according to Fig. 3, to update the hidden and cell 
state vectors. Each gate creates a feature vector according to 
Eq. 1, where the activation is sigmoid except for the forget 
gate which is activated with the hyperbolic tangent and W 
represents a unique corresponding weight to each gate. After 
the LSTM computes these operations for each timestep in 
the input protein, the resultant hidden and cell state vectors 
are passed through the rest of the model which consists of 
a rectified linear activation unit, dropout layer, and a sig-
moid or softmax activated fully connected layer with 2 out-
puts. This model has 395,402 trainable parameters, which 
is considered quite small in the deep learning community. 
Adam and cross-entropy loss were used as the criterion and 
optimizers for the model parameters. Due to variability in 
accuracy caused by random weight initialization and random 
batch sampling during training, 100 identical models were 
trained. The same process was repeated for a smaller LSTM 
with only 200 hidden nodes incurring 183,602 parameters. 
We later observed an increase in LSTM prediction accu-
racy with the addition of a final sigmoid activation and thus 
included it in both small and large LSTM model variants. 
Model weights were saved according to their best validation 
accuracy scores for later hidden state extraction.
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Equation 1 Typical gate equation for LSTM gate, where W 
is a unique weight for that gate, x(t) is the input at timestep 
t, and h(t-1) is the previous hidden state vector.

(1)activation(x(t) ∙W1 + h(t − 1) ∙W2 +W3)
3.4.2 � CNN prediction

The CNN was designed to have a similar number of lim-
ited parameters (394,425) as the LSTM network in order to 
equate the models to the greatest extent possible. Sequences 

Fig. 1   Sequence PCA. Binding 
dataset PCA (left) and non-bind 
dataset PCA after (middle) and 
before downsampling (right)
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were encoded as one-hot grayscale images, padded with an 
arbitrary value to the maximum sequence length of 1,750 
and sampled with a batch size of one. The model consisted 
of three convolutional layers each followed by dropout (.5) 
and rectified linear unit (ReLU). Each convolution kernel 
was 3x3, 5x5, and 1x1, respectively, per layer and drop-out 
with rectified linear unit was used after each convolution 
layer. The network’s final linear layer outputted 2 nodes and 
was evaluated by cross-entropy loss and ADAM optimizer. 
The last convolutional layer was designed to retain the input 
sequences’ size outputting one feature map of size 1,751 
by 28. A smaller variation of the model with only 183,743 
parameters was also evaluated (Fig. 4). Hidden states were 
extracted from the best performing CNNs by summing the 
last convolutional layer’s feature map across all sequences 

and then across the one-hot encoding dimension. This 
allowed for total activation for each position to be calculated 
and processed similarly to the LSTM hidden state analysis. 
The CNN model variant was trained 100 times separately to 
account for random weight initialization. Best performing 
models were selected according to the same procedure as 
used in the LSTM binding-site analysis method.

3.5 � Binding‑site analysis

Evaluation of the LSTM states’ hidden layer and CNN 
feature map activations were performed by extracting the 
respective weights from all correctly predicted, reversed 
sequences at each time step for the top five performing 
models from each model variant. Since negative weights 
do not necessarily mean negation in class prediction, 
the absolute value of all hidden cell activation weights 
(LSTM) and last convolutional layer (CNN) feature maps 
were recovered. Top models were those that most accu-
rately predicted all sequences during testing of all 81 
sequences in each class using the previously trained mod-
els’ learned weights. Once the best performing test models 
were determined, their original training and validation loss 
and accuracy trends were evaluated for obvious overfit-
ting (i.e., poor training accuracy, loss in validation lower 
than loss in accuracy, etc.). All hidden cell weights were 
reversed so positions now align with FASTA formatting 
(position zero is the first residue in the sequence and so 
forth). PCA was performed on the hidden cell weights 
of all top models combined for LSTM and CNN, respec-
tively. All sequence weights were then summed per class, 

Fig. 2   Sequence length per class

Fig. 3   LSTM model architec-
ture

1284 Medical & Biological Engineering & Computing (2022) 60:1279–1293



1 3

per model. Differences in position-specific areas of inter-
est were first visualized in all weights for each time step 
across the summed weight matrices. Activation weights 
were then summed across all nodes per class and scaled 
between 0 and 1 for comparison. The following tests were 
performed collectively on the five top models for each of 
the four model variants.

3.6 � DNA‑1 anti‑DNA autoantibody

Activation weights for DNA binding antibody DNA-1 were 
recovered individually and compared to the position-spe-
cific residues important for binding given by X-ray crystal-
lography reported in [37]. To remove the models’ internal 
representations of non-binding proteins and make activa-
tions more interpretable, convolutions were performed with 
v=[1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
 ] without decreasing activation length on 

the absolute difference between the standardized DNA-1 
and standardized non-binding class activation sums (Eq. 2). 
Here, x and y are activations of DNA-1 and non-bind activa-
tions, respectively. In later analysis, the second term includ-
ing DNA-1 is removed. Peak activations were then deter-
mined using operator set thresholds.

Equation 2 Standardized convolution operation to process 
LSTM hidden states for binding site prediction, where x is 
a binding activation, y a non-binding activation, d is the 
DNA-1 activation, � is the standard deviation of the respec-
tive activation, � is the respective average activation, and v 
is the convolution operation.

(2)
∞∑

m=−∞

v
(
|x − �

�
−

y − �

�
|
)
− v

(
|d − �

�
−

y − �

�
|
)

3.6.1 � Knockout test

To validate the activations provided by the hidden state’s 
analysis on DNA-1, a “knockout” test was performed. We 
reasoned that if the suspected autoantibody binding site 
is being used for class prediction by the model, once such 
information is removed, the model should be more likely to 
predict the sequence as non-binding. This process is similar 
to genetic knockout in traditional transgenic mice models. 
For each non-binding sequence, the residues at the literature 
binding sites were transplanted into a copy of the DNA-1 
sequence at the literature binding site positions. For each 
transplant, sequences in both classes were paired according 
to similar lengths. For binding sequences that were paired 
with a non-binding sequence of shorter length, a random 
non-binding sequence was chosen to fill in the binding sites 
exceeding the original sequence length. Only five non-bind-
ing sequences were smaller than the last binding site posi-
tion, 327. These modified DNA-1 sequences were reversed 
and evaluated by the top trained prediction models. Hidden 
states were extracted and processed according to equation 
one between knockout and nonbinding class activations and 
compared to DNA-1. To reduce noise between major peaks 
found in both DNA-1 and knockout activation outside the 
literature binding sites, the difference between DNA-1 and 
knockout greater than zero provided an alternative bind site 
prediction for peaks at various operator-set thresholds.

3.6.2 � Insertion test

To determine if binding sites are all that is necessary for 
class prediction, this process was repeated for an “insertion” 
test. Again, this is similar to transgenic mice models. DNA-1 
literature binding sites were transplanted into non-binding 

Fig. 4   CNN model architecture
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sequences of similar length. If a non-binding sequence was 
shorter than 444 residues, the length of DNA-1, only the 
available binding site positions were swapped and lengths 
were retained. Sequences were reversed and evaluated by 
the top trained models. Hidden states were extracted and 
processed according to equation one between insertion 
sequences’ activation and non-binding sequences’ activation. 
The insertion activation was then compared to the DNA-1 
activation and literature known binding sites.

3.6.3 � Peak knockout test

The knockout test described previously relies on literature 
binding site knowledge. The work proposed here is attempt-
ing to provide viable suggestions for proteomic interactions 
in cases where domain knowledge is extremely limited, as 
is often the case for synthetic protein design. As a method 
of predicting binding sites in such cases, another knockout 
test was performed on the major peaks in DNA-1 activa-
tions (i.e., “peak knockout”). This approach is similar to the 
original knockout test, but instead of using literature known 
binding sites, we use the positions predicted by the mod-
el’s peak activation sites. The literature known binding site 
for DNA-1 is 66 residues, approximately 15% of the total 
sequence. Therefore, to make balanced comparisons with 
the original knockout test, peaks above the 58% threshold 
resulted in 68 residues to be modified in the subsequent test. 
Similar thresholds were chosen for the smaller LSTM and 
CNN model variants. Positions of these peaks were then 
used as the sites that were replaced by non-binding sequence 
residues. All sequences were evaluated accordingly with the 
original knockout test procedure. Comparisons were then 
made between the peak knockout and DNA-1 activations. 
To reduce noise in the activations, the difference between 
DNA-1 and peak knockout activations yield an alternative 
binding site suggestion. Final binding site sub-sequences 
were found by overlapping the activations created by pre-
vious DNA-1 analysis peaks and peak knockout occluded 
DNA-1 activations peaks.

4 � Results

4.1 � Preliminary data processing

Boxplots of antibody and autoantibody sequence lengths 
indicated that the median sequence length was significantly 
lower in autoantibody sequences than in antibody sequences, 
as determined by the non-overlapping notches between the 
two boxes (Fig. 2). This informed the use of the LSTM net-
work and our specific CNN implementation because these 
did not require that all sequences were of the same length. 
In contrast, a model with fixed length inputs would require 

the shorter sequences to be padded to the maximum length, 
and this padding could potentially be exploited by a model 
in predicting whether a given sequence was an antibody or 
autoantibody.

4.2 � Binding specificity

Table 1 shows the accuracies for each of the four mod-
els. Across both LSTMs and CNNs, the smaller variants 
resulted in better binding prediction accuracy. The smaller 
CNN model had the best average validation accuracy across 
100 models and was statistically significant at 87.81% by 
one sample t-test, t(99) = 90.9673, p .0001. The smaller 
LSTM binding prediction achieved average validation accu-
racy of 72.64% and was also statistically significant, t(99) 
= 20.5201, p .0001. Notably, the LSTM prediction perfor-
mance increases with added sigmoid activation, while the 
same effect is not observed for CNN. During the testing 
phase on the trained models, average accuracy score was 
87.07% for the binding class and 88.56% for the non-binding 
class by the LSTM and 96.56%, 97.81% by CNN, respec-
tively, for each smaller variant and similarly observed for 
larger variants (Table 2). The chosen top models for hidden 
state analysis were all above 95% accurate on all sequences. 
PCA alone was not enough to separate binding from non-
binding proteins (Fig. 5). The percentage of variability 
for each principal component was 26.2%, 7.2%, and 4.4% 
respectively, accounting for 37.8% of the total variance in 
the dataset. Raw activation weight visualization showed 
distinct horizontal bands at particular time steps (Fig. 6). 

Table 1   Average validation accuracies across LSTM and CNN mod-
els

Model Sigmoid Parameters Avg. validation accuracy

LSTM No 395,402 53.41% t(99)=5.7345, p .0001
LSTM Yes 395,402 66.21% t(99)=11.7782, p .0001
LSTM Yes 183,602 72.64% t(99)=20.5201, p .0001
CNN Yes 395,425 63.80% t(99)=7.2982, p .0001
CNN No 395,425 73.34% t(99)=12.0717, p .0001
CNN No 183,743 87.81% t(99)=90.9673, p .0001

Table 2   Average test accuracies for small LSTM model for each class

Class Model Average 
test accu-
racy

Binding LSTM 87.07%
Non-binding LSTM 88.56%
Binding CNN 96.56%
Non-binding CNN 97.81%
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Activation sums showed distinct peaks at different positions 
per class (Table 3).

4.3 � Binding‑site analysis

Table 2 shows correlation and significance between the 
suggested binding sites at each stage of processing for each 
model. The larger LSTM achieved the best binding site 
recovery and is reported in the proceeding results. Similar 
results and figures were observed in other model variants. 
DNA-1, binding, and non-binding activations had different 
unique peaks across different positions (Fig. 7). DNA-1 
literature-defined binding site and hidden state activation 
sums overlapped in several major peaks (Fig. 8) but were 
not significantly correlated, r(798) .0627, p < .1. Processed 
DNA-1 activations according to equation one, r(798) = 
.1870, P < .001 and subsequent peaks at threshold 85%, 
r(798) = .2476, p < .0001, and threshold 58%, r(798) = 
.1433, p < .01, were significantly correlated. Knockout 
testing results showed on average 86.17% reversal from 
binding to non-binding class prediction. Hidden state anal-
ysis showed similar general trends between the knockout 
and the DNA-1 activations and was not significant, r(798) 
= -.0243, p < .1. At threshold 58%, however, trending 
significance was observed between knockout and literature 
known sites, r(798) = -.0903, p < .1. Discrepancies in 

Fig. 5   PCA on hidden cell 
weights. Each hidden cell 
activation matrix is encoded per 
sequence sample for binding 
(red) and non-binding (purple) 
classes

Fig. 6   Raw activation differences between classes. Difference in bind 
and non-bind hidden cell weights from LSTM model variant

Table 3   Pearson correlation 
coefficients and significance 
values for binding site 
activation’s at various 
processing steps compared to 
literature bind site for DNA-1, 
df=798

LSTM LSTM CNN CNN

Small variant Large variant Large variant Small variant
DNA-1 -0.0799, 0.1106 0.1433, 0.0041 0.0134, 0.7900 0.1071, 0.0322
Occluded -0.1013, 0.0428 0.2566, 1.9567e-7 -0.1380, 0.0057 0.0750, 0.1341
Overlap -0.1094, 0.0286 0.3674, 3.1232e-14 -0.0986, 0.04883 0.0711, 0.1555
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activation difference between knockout and DNA-1 were 
least in areas outside the literature binding sites. Thus, 
occlusion of knockout activations from DNA-1 activations 
shows significant noise reduction between literature known 
binding sites, r(798) = .2140, p < .0001. Subsequent peaks 
for threshold 58% were not significant, r(798) = .0328, p < 
.1. However, lowering this threshold to 50% resulted again 
in significance between the knockout occluded DNA-1 
activations and literature binding sites, r(798) = .1122, 
p = .02. Insertion test was less effective, showing only 
6.67% reversal on average with upper bounds at 9.87%. 
Hidden state analysis showed insertion activations very 
closely following DNA-1 activations, but without signifi-
cant correlation to the binding sites, r(798) = .0500, p < 

.1. However, only looking at peaks above 58% threshold 
did show significance, r(798) = .1018, p =.04. Knockout 
of all DNA-1 peaks greater than 58% the max peak (Fig. 9) 
showed on average 80.74% prediction reversal, with three 
models correctly predicting 80 or more sequences. Hid-
den states analysis was similar to that of previous knock-
out, with activations closely following DNA-1 activations 
with most discrepancies inside literature binding regions, 
resulting in non-significance, r(798) = -.0415, p < .1. 
Peaks above 58% threshold were trending towards signifi-
cant, r(798) = -.0880, p < .1 (Fig. 10). Noise reduction by 
difference between DNA-1 and knockout peak activations 
showed significant overlap between the literature known 

Fig. 8   DNA-1 standardized activations before equation one process-
ing, r(798) = 0.053

Fig. 9   DNA-1 activations processed according to equation one for 
peaks at 58% threshold, r(798) = 0.143), p .01

Fig. 10   Knockout of DNA-1 peaks processed according to equation 
one for peaks at 58% threshold, r(798) = -0.088, p=.013

Fig. 7   Non-binding, binding, and DNA-1 activations from LSTM 
hidden cell standardized between 0 and 1
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binding sites and the model suggested sites peaks at 58% 
threshold, r(798) = .2566, p < .0001 (Fig. 11).

4.4 � Binding sub‑sequences

Recovered sub-sequences found by the 58% threshold peaks 
of DNA-1, peak knockout procedure (without overlap) 
recovered significant partial residues in literature binding 
regions, r(798) = .256, p < .0001. In Figs. 12 and 13, red 
letters indicate model suggested regions of interest, bold as 

literature suggested binding residues, and underlined regions 
indicating correctly suggested residues. Six other residues 
and sub-sequences outside the reported binding sites were 
also suggested. There is no apparent trend in the nature of 
residues suggested in blatant misses. However, some near-
hits are often only a few residues premature of reported bind-
ing site sub-sequences. Overlap between DNA-1 peaks and 
peak knockout occluded DNA-1 peak activations resulted 
in highest sub-sequence fidelity in significance, r(798) = 
.367, p < .0001. This final method resulted in shorter and 
less frequent misses. Only one region that was originally a 
hit was missed; however, a near miss suggestion was directly 
next to the target residues in this site. Agreement between 
CNN and LSTM binding sub-sequences is shown in Fig. 14.

5 � Discussion

5.1 � Binding classification

As expected, model architecture configurations with less 
trainable parameters performed better. Since the optimiz-
able gradients are less complex, the smaller dataset used in 
this application is more thoroughly integrated during back 
propagation. Overall, CNN models perform better on predic-
tion tasks. CNN models have an spatio-temporal inductive 
bias while LSTM are temporally biased, resulting in features 
that reflect different types of patterns across the protein’s 
residues. As demonstrated by works aforementioned, a com-
bination of both models has been effective at increasing class 
prediction from sequence alone. Thus, a combination of both 

Fig. 11   Peak knockout occluded DNA-1 activations processed 
according to equation on for peaks at 58% threshold, r(798) = 0.257, 
p .01

Fig. 13   Overlap of DNA-1 and 
difference between DNA-1 with 
peak knockout peaks at 58% and 
sub-sequence comparison with 
literature binding site where red 
indicates model suggested sites, 
bold is literature binding sites, 
and underline is the overlap of 
the two

Fig. 12   Sub-sequences found in 
knockout peak analysis. Peaks 
according to non-bind occluded 
DNA-1 activation peaks at 
58% threshold and model sug-
gested peaks via knockout peak 
occluded DNA-1 activations 
where red indicates model sug-
gested sites, bold is literature 
binding sites, and underline is 
the overlap of the two
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types of models could best aid in a more vigorous approach 
to vaccine and drug design. Future work could clarify how a 
combined approach might affect the prediction of the bind-
ing-site residues from the hidden state analysis.

Model variability in training is due to differences in ran-
dom weight initialization and order of batch sampling creat-
ing hurdles in overcoming local minima during parameter 
optimization. Model prediction had a slight bias for the non-
binding class, supporting the absence of overfitting to the 
binding dataset. Models with higher test accuracy, even if 
they did not perform as well during the training phase, show 
accurately learned weights for class recognition, which can 
be extended to novel or synthetic proteins outside the train-
ing and validation dataset. Activation differences across all 
nodes at specific positions suggest model decisions are por-
trayed differently per class in the hidden weights. Further-
more, the raw activation across nodes shows the model relies 
most on sequence positions up to 225 while following posi-
tions are less important for binding class prediction. Since 
most sequences are around this length or greater than, this 
supports the HVD region, at the beginning of the FASTA, 
being the most common region of binding. These areas of 
interest are further shown in the activation sums which lead 
to the sub-sequence distribution.

5.2 � Binding site analysis

Hidden state analysis showed greater correspondence 
to previously established binding sites in the LSTM vs. 
CNN models. This is likely because LSTM encodes posi-
tion-specific information rather than CNN which detects 
spatial-temporal invariant features. CNN top models suf-
fered in their ability to correctly predict the sequence of 
interest, DNA-1. This likely resulted in poorly interpreted 
hidden state analysis, supported by Fig. 14. Furthermore, 
the overall increased Pearson’s coefficient (PC) for larger 
models suggests that while binding prediction is increased 
with less parameters, the learned features for extracting 

binding sites are more interpretable in models with more 
parameters. Difference between DNA-1 and the overall 
bind activation weights suggests the binding motif is not 
only position specific but also sub-sequence dependent, 
otherwise drop-off for later position indices would have 
been observed in DNA-1 outside the HVD region. All 
sites had distinguishable overlapping activation peaks. 
However, there were major extraneous activation peaks at 
non-binding sites primarily in late downstream regions, 
which can be explained by the LSTM’s implicit higher 
activation for beginning sequences due to lack of recurrent 
information. The low PC value in raw activations suggests 
activation alone is not sufficient enough for high-fidelity 
binding site suggestions. This is supported by increased 
PCs from equation one and noise occlusion processing.

5.2.1 � Knockout

Majority reversal of binding prediction by knockout test 
suggests the prediction model relies heavily on literature 
binding site positions as features for class prediction. 
Furthermore, the PC dropped dramatically for the over-
all trend and thresholded peaks, suggesting removal of 
the binding sites impares the model’s ability to find cor-
rect binding sub-sequences, as expected. Discrepancies 
in peaks between DNA-1 and knockout activations were 
mostly in binding regions. Peaks outside of the literature 
binding sites, noise, were reduced in the occlusion pro-
cessing step. This intermediate noise is likely caused by 
high variation amongst training sequences. That is, the 
model is looking in those positions for learned features it 
has expected from other sequences during training (i.e., 
feature of proteins in general or of antibody class, etc.). 
Differences between DNA-1 and knockout suggest these 
areas are less likely to be true binding site predictions and 
their removal generally increases PC in lower operator-set 
thresholds.

Fig. 14   Agreement between 
model variants on sub-sequence 
prediction. From left to right: 
r(798) = -0.1018, p < .05; 
r(798) = -.0442, p < .1; r(798) 
= -.0155, p < .1; r(798) = 
.0892, p < .1; r(798) = .1369, p 
< .01; r(798) = .3070, p .001
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5.2.2 � Insertion

These assertions are further supported by the weak 
reversal shown by the insertion of binding sites into 
non-binding sequences. Insertion test activation trends 
were most similar to DNA-1 trends and low reversal 
rates were observed, the model is relying, in part, on 
other areas of interest due to its training on sequences 
of various lengths and antibody families. Peaks between 
the first and last groups of reported binding sites are 
located where all nodes had activation drop off in the 
raw visualization. These regions are likely the end of the 
HVD, proposing the model is also looking for features in 
this HVD region (residue 0-225) for binding prediction 
previously learned in the training phase. While this effect 
does confound the binding site prediction, we propose it 
strengthens the overall prediction mechanism’s ability 
to generalize.

5.2.3 � Peak knockout

Knockout of DNA-1 peaks further support this conjecture 
as the reversal rate was retained and occlusion of these 
activations from DNA-1 resulted in the highest significant 
correlations with literature binding sites. Remarkably, the 
recovery of binding site information corresponding with lit-
erature known binding sites from the peak knockout poses 
this methodology as reliable for binding site suggestions 
without extensive domain knowledge. Making it a unique 
and helpful technique in synthetic design.

5.2.4 � Binding sites

Sub-sequence recovery, while somewhat significant without 
overlap between original DNA-1 peak and peak knockout 
occluded DNA-1 activations, suggested sites unrelated to 
binding which could delay research and development. There-
fore, the final overlap process shows a highly significant 
method of computationally predicted residue binding sites 
and sub-sequences with limited domain knowledge, limited 
data infrastructure, and low computing resource require-
ments. Operators can leverage precision and recall in the 
binding site suggestion methodology by altering the thresh-
old for peak identification and smoothing operator during 
convolutions throughout the procedure according to specific 
use-case needs.

5.2.5 � External validation

Traditionally, external validation is performed on data-
sets similar to the one used in this work to verify if the 
model can generalize out of the training and validation 
distributions. Unfortunately in the case of anti-DNA 

antibodies, such biological data is extremely limited. 
This work presents a collection of such limited data 
where the primary sequence was available. Thus, there 
was no further external data to validate one. Future works 
in molecular biology could produce sequencing data to 
further validate this model’s predictive analysis. Other 
works could use the same methodology proposed here 
on larger existing datasets where external assay data is 
readily available.

6 � Conclusion

The current work establishes that the limited (in the 
number of parameters) deep learning models applied to 
primary sequences can predict whether a novel sequence 
will bind to DNA and that the hidden activations of these 
models yielded significant agreement with the binding 
site reported in previous studies, r(798) = 0.3674, p = 
3.1232e-14. These recovered areas allow researchers 
to closely examine the network’s internal state, gain-
ing insight into position-specific residues involved in 
antibody:DNA-binding. We also show that while CNN 
is better suited for binding prediction in smaller mod-
els, larger LSTM hidden states allow for a more accurate 
binding site interpretation. The proposed methodology 
can be extended to other domains of interest that may 
have limited datasets available. Future work should focus 
on reducing noise in the hidden state activations and com-
piling residue investigations/predictions in a comprehen-
sive manner to inform binding site prediction with end-
use researchers in mind. Other approaches combining 
CNN and LSTM may be of use, but configuring the CNN 
to pass position-specific information to the LSTM hidden 
states is unlikely using this methodology. A new math-
ematical analysis of the later LSTM activations would be 
needed. Findings implicate suggestions for RVD and pos-
sible synthetic components. Collective implications of 
this research will further the rapidly developing field of 
applied deep learning, which in turn will allow for more 
efficient applications and directly enhance protein data 
processing. Additionally, we expect the proposed model 
to be versatile at evaluating other proteomic datasets and 
user friendly for researchers without extensive computa-
tional background knowledge and computing resources. 
At the same time, the prospective sequence specificities 
allow experts in wet-lab approaches, like X-ray crystal-
lography, to make more informed decisions.
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