Skip to main content

Advertisement

Log in

DCNN-based prediction model for detection of age-related macular degeneration from color fundus images

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Age-related macular degeneration (AMD) is a degenerative disorder in the macular region of the eye. AMD is the leading cause of irreversible vision loss in the elderly population. With the increase in aged population in the world, there is an urgent need to develop low-cost, hassle-free, and portable equipment diagnostic and analytical tools for early diagnosis. As AMD detection is done by examining the fundus images, its diagnosis is heavily dependent on medical personnel and their experience. To remove this issue, computer-aided algorithms may be used for AMD detection. The proposed work offers an effective solution to the AMD detection problem. It proposes a novel 13-layer deep convolutional neural network (DCNN) architecture to screen fundus images to spot direct signs of AMD. Five pairs of convolution and maxpool layers and three fully connected layers are utilized in the proposed network. Extensive simulations on original and augmented versions of two datasets (iChallenge-AMD and ARIA) consisting of healthy and diseased cases show a classification accuracy of 89.75%, 91.69%, and 99.45% on original and augmented versions of iChallenge-AMD and 90.00%, 93.03%, and 99.55% on ARIA, using a 10-fold cross-validation technique. It surpasses the best-known algorithm using DCNN by 2%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bressler NM (2004) Age-related macular degeneration is the leading cause of blindness. JAMA 291(15):1900–1901

    Article  CAS  PubMed  Google Scholar 

  2. Bressler NM, Bressler SB, Congdon NG, Friedman D, Klein R, Lindblad A, Milton R, Seddon J et al (2003) Potential public health impact of age-related eye disease study results: Areds report no. 11. Arch Ophthal (Chicago, Ill.: 1960) 121(11):1621–1624

    Article  Google Scholar 

  3. Abràmoff MD, Garvin MK, Sonka M (2010) Retinal imaging and image analysis. IEEE Rev Biomed Eng 3:169–208

    Article  PubMed  PubMed Central  Google Scholar 

  4. Prince MJ, Wu F, Guo Y, Robledo LMG, O’Donnell M, Sullivan R, Yusuf S (2015) The burden of disease in older people and implications for health policy and practice. Lancet 385(9967):549–562

    Article  Google Scholar 

  5. Jager RD, Mieler WF, Miller JW (2008) Age-related macular degeneration. New England J Med 358(24):2606–2617

    Article  CAS  Google Scholar 

  6. Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY (2012) Age-related macular degeneration. Lancet 379(9827):1728–1738

    Article  Google Scholar 

  7. Fourcade A, Khonsari R (2019) Deep learning in medical image analysis: a third eye for doctors. J Stomatol Oral Maxillofac Surg 120(4):279–288

    Article  CAS  PubMed  Google Scholar 

  8. Organization WH (2015) World report on ageing and health. World Health Organization

  9. Gass JDM (1973) Drusen and disciform macular detachment and degeneration. Arch Ophthalmol 90(3):206–217

    Article  CAS  PubMed  Google Scholar 

  10. de Jong EK, Geerlings MJ, den Hollander AI (2020) Age-related macular degeneration. In: Genetics and genomics of eye disease. Elsevier. 55–180

  11. Bird A, Bressler NM, Bressler SB, Chisholm I, Coscas G, Davis M, De Jong P, Klaver C, Klein B, Klein R et al (1995) An international classification and grading system for age-related maculopathy and age-related macular degeneration. Surv Ophthalmol 39(5):367–374

    Article  CAS  PubMed  Google Scholar 

  12. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60(2):91–110

    Article  Google Scholar 

  13. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05). IEEE 1:886–893

  14. Burlina P, Freund DE, Dupas B, Bressler N (2011) Automatic screening of age-related macular degeneration and retinal abnormalities. In: Annual international conference of the IEEE engineering in medicine and biology society. IEEE 3962–3966

  15. Freund DE, Bressler N, Burlina P (2009) Automated detection of drusen in the macula. In: IEEE International symposium on biomedical imaging: from nano to macro IEEE 61–64

  16. Pacheco KD, Wolfson Y, Burlina P, Freund DE, Feeny A, Joshi N, Bressler NM (2016) Evaluation of automated drusen detection system for fundus photographs of patients with age-related macular degeneration. Invest Ophthalmol Visual Sci 57(12):1611–1611

    Google Scholar 

  17. Trucco E, Ruggeri A, Karnowski T, Giancardo L, Chaum E, Hubschman JP, Al-Diri B, Cheung CY, Wong D, Abramoff M et al (2013) Validating retinal fundus image analysis algorithms: issues and a proposal. Invest Ophthalmol Visual Sci 54(5):3546–3559

    Article  Google Scholar 

  18. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press

  19. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  PubMed  Google Scholar 

  20. Shen D, Wu G, Suk HI (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410

    Article  PubMed  Google Scholar 

  22. de La Torre J, Valls A, Puig D (2019) A deep learning interpretable classifier for diabetic retinopathy disease grading. Neurocomput

  23. Masumoto H, Tabuchi H, Nakakura S, Ohsugi H, Enno H, Ishitobi N, Ohsugi E, Mitamura Y (2019) Accuracy of a deep convolutional neural network in detection of retinitis pigmentosa on ultrawide-field images. PeerJ 7:e6900

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pead E, Megaw R, Cameron J, Fleming A, Dhillon B, Trucco E, MacGillivray T (2019) Automated detection of age-related macular degeneration in color fundus photography: A systematic review. Surv Ophthalmol 64(4):498–511

    Article  PubMed  PubMed Central  Google Scholar 

  25. Acharya UR, Hagiwara Y, Koh JE, Tan JH, Bhandary SV, Rao AK, Raghavendra U (2017) Automated screening tool for dry and wet age-related macular degeneration (ARMD) using pyramid of histogram of oriented gradients (PHOG) and nonlinear features. J Comput Sci 20:41–51

    Article  Google Scholar 

  26. Mookiah MRK, Acharya UR, Fujita H, Koh JE, Tan JH, Chua CK, Bhandary SV, Noronha K, Laude A, Tong L (2015) Automated detection of age-related macular degeneration using empirical mode decomposition. Knowl Based Syst 89:654–668

    Article  Google Scholar 

  27. Burlina P, Pacheco KD, Joshi N, Freund DE, Bressler NM (2017) Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis. Comput Bio Med 82:80–86

    Article  PubMed  PubMed Central  Google Scholar 

  28. Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM (2017) Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol 135(11):1170–1176

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tan JH, Bhandary SV, Sivaprasad S, Hagiwara Y, Bagchi A, Raghavendra U, Rao AK, Raju B, Shetty NS, Gertych A et al (2018) Age-related macular degeneration detection using deep convolutional neural network. Future Gener Comput Syst 87:127–135

    Article  Google Scholar 

  30. Grassmann F, Mengelkamp J, Brandl C, Harsch S, Zimmermann ME, Linkohr B, Peters A, Heid IM, Palm C, Weber BH (2018) A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology 125(9):1410–1420

    Article  PubMed  Google Scholar 

  31. Broad (Baidu Research Open-Access Dataset) (2019) iChallenge-AMD dataset. http://ai.baidu.com/broad/subordinate?dataset=amd. Accessed 15-October-2019

  32. Mookiah MRK, Acharya UR, Fujita H, Koh JE, Tan JH, Noronha K, Bhandary SV, Chua CK, Lim CM, Laude A et al (2015) Local configuration pattern features for age-related macular degeneration characterization and classification. Comp Bio Med 63:208–218

    Article  PubMed  Google Scholar 

  33. Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2013) Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229

  34. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. 1097–1105

  35. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) ImageNet: A large-scale hierarchical image database. In: CVPR09

  36. Das S, Malathy C (2018) Survey on diagnosis of diseases from retinal images. In: Journal of physics: conference series. IOP Publishing. 1000:012053

  37. Chakraborty R, Pramanik A (2021) Deep learning-based automated detection of age-related macular degeneration from retinal fundus images. In: Proceedings of International Conference on Frontiers in Computing and Systems. Springer 433–441

  38. Aria (Automatic Retinal Image Analysis) dataset (2020) https://www.researchgate.net/post/How_can_I_find_the_ARIA_Automatic_Retinal_Image_Analysis_Dataset. Accessed 15-April-2020

  39. Hyman LG, Lilienfeld AM, Ferris FL III, Fine SL (1983) Senile macular degeneration: a case-control study. Am J Epidemiol 118(2):213–227

    Article  CAS  PubMed  Google Scholar 

  40. Gass J (1997) Stereoscopic atlas of macular disease and treatment. Mosby, St Louis, Missouri

  41. Bastek JV, Siegel EB, Straatsma BR, Foos RY (1982) Chorioretinal juncture: pigmentary patterns of the peripheral fundus. Ophthalmology 89(12):1455–1463

    Article  CAS  PubMed  Google Scholar 

  42. Humphrey WT, Carlson RE, Valone JA Jr (1984) Senile reticular pigmentary degeneration. Am J Ophthalmol 98(6):717–722

    Article  CAS  PubMed  Google Scholar 

  43. Young RW (1987) Pathophysiology of age-related macular degeneration. Surv Ophthalmol 31(5):291–306

    Article  CAS  PubMed  Google Scholar 

  44. Leibowitz HM, Krueger D, Maunder L, Milton R, Kini M, Kahn H, Nickerson R, Pool J, Colton T, Ganley J et al (1980) The Framingham Eye Study monograph: an ophthalmological and epidemiological study of cataract, glaucoma, diabetic retinopathy, macular degeneration, and visual acuity in a general population of 2631 adults, 1973–1975. Surv Ophthalmol 24(Suppl):335–610

    CAS  PubMed  Google Scholar 

  45. Taylor L, Nitschke G (2017) Improving deep learning using generic data augmentation. arXiv:1708.06020

  46. Hosny KM, Kassem MA, Foaud MM (2019) Classification of skin lesions using transfer learning and augmentation with Alex-net. PloS One 14(4):e0217-293

    Article  CAS  Google Scholar 

  47. Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer P, Gramfort A, Grobler J, Layton R, VanderPlas J, Joly A, Holt B, Varoquaux G (2013) API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning. 108–122

  48. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874

    Article  Google Scholar 

  49. Davis J, Goadrich M (2006) The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd international conference on Machine learning. 233–240

  50. Saito T, Rehmsmeier M (2015) The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS One 10(3):e0118-432

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rivu Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, R., Pramanik, A. DCNN-based prediction model for detection of age-related macular degeneration from color fundus images. Med Biol Eng Comput 60, 1431–1448 (2022). https://doi.org/10.1007/s11517-022-02542-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02542-y

Keywords

Navigation