Skip to main content

Advertisement

Log in

Effect of left ventricular assist device on the hemodynamics of a patient-specific left heart

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This article describes the numerical efforts made to investigate the influence of a left ventricular assist device (LVAD) on the patient-specific left heart’s hemodynamics. Two different computational geometries with left heart have been simulated over the entire cardiac cycle (case 1: healthy heart without LVAD and case 2: diseased heart with LVAD). The blood flow was simulated by implementing Bird-Carreau non-Newtonian model. Simulation results show that implantation of LVAD pump imparts major influence on the hemodynamics of the heart; it also provides a cardiac output of 4.87 L/min even at the diastolic phase. Furthermore, post LVAD implantation, approximately eight times more wall shear stress, is noticed at the aorta during the ventricular systole. In particular, major changes in the fluidics are observed inside the aortic region. A possibility of flow stagnation is noticed near the aortic root during the diastolic phase due to the bisection of incoming bloodstreams from the outflow graft. The flow characteristics of the LVAD pump are also observed to be significantly different from the idealized simulations (idealized tubular inlet situation). The observation of this study can help in understanding post-implant critical hemodynamic issues due to pump performance and its subsequent impact on the heart.

Graphical abstract

A simulation approach-based study has been performed to investigate the influence of LVAD on the hemodynamics of a heart. A 3D computational model of a patient-specific heart has been created from CT scan datasets for diastole and systole phases (a). An axial flow blood pump has been implanted computationally into the left heart (b). The implanted blood pump enhances the cardiac output and elevates shear generation (c) and (d).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ambrosy AP, Fonarow GC, Butler J et al (2014) The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol 63(12):1123–1133

    Article  Google Scholar 

  2. Trivedi JR, Cheng A, Singh R, Williams ML, Slaughter MS (2014) Survival on the heart transplant waiting list: impact of continuous flow left ventricular assist device as bridge to transplant. Ann Thorac Surg 98:830–834

    Article  Google Scholar 

  3. InformedHealth.org [Internet]. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006-. Types of heart failure. 2018 Jan 25. Available from: https://www.ncbi.nlm.nih.gov/books/NBK481485/

  4. Sen A, Larson JS, Kashani KB et al (2013) Mechanical circulatory assist devices: a primer for critical care and emergency physicians. Crit Care 20(1):153

    Article  Google Scholar 

  5. Stöhr EJ, McDonnell BJ, Colombo PC, Willey JZ (2019) CrossTalk proposal: blood flow pulsatility in left ventricular assist device patients is essential to maintain normal brain physiology. J Physiol 597:353–356

    Article  Google Scholar 

  6. Pozzi M, Giraud R, Tozzi P et al (2015) Long-term continuous-flow left ventricular assist devices (LVAD) as bridge to heart transplantation. J Thorac Dis 7(3):532–542. https://doi.org/10.3978/j.issn.2072-1439.2015.01.45

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cheng A, Williamitis CA, Slaughter MS (2014) Comparison of continuous-flow and pulsatile-flow left ventricular assist devices: is there an advantage to pulsatility? Ann Cardiothorac Surg 3(6):573–581. https://doi.org/10.3978/j.issn.2225-319X.2014.08.24

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kannojiya V, Das AK, Das PK (2021) Comparative assessment of different versions of axial and centrifugal LVADs: a review. Artif Organs Early Access. https://doi.org/10.1111/aor.13914

    Article  Google Scholar 

  9. Su B, Kabinejadian F, Phang HQ, Kumar GP, Cui F, Kim S et al (2015) Numerical modeling of intraventricular flow during diastole after implantation of BMHV. PLoS ONE 10(5):e0126315. https://doi.org/10.1371/journal.pone.0126315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seo JH, Vedula V, Abraham T, Lardo AC, Dawoud F, Luo H, Mittal R (2014) Effect of the mitral valve on diastolic flow patterns. Phys Fluids 26:121901

    Article  Google Scholar 

  11. Lantz J, Gupta V, Henriksson L, Karlsson M, Persson A, Carlhäll CJ, Ebbers T (2019) Impact of pulmonary venous inflow on cardiac flow simulations: comparison with in vivo 4d flow MRI. Ann Biomed Eng 47(2):413–424

    Article  Google Scholar 

  12. Lantz J, Henriksson L, Persson A, Karlsson M, Ebbers T (2016) Patient-specific simulation of cardiac blood flow from high-resolution computed tomography. J Biomech Eng 138(12):121004-1–9. https://doi.org/10.1115/1.4034652

    Article  Google Scholar 

  13. Jahanzamin J, Fatouraee N, Moghaddam AN (2019) Effect of turbulent models on left ventricle diastolic flow patterns simulation. Comput Methods Biomech Biomed Eng 22(15):1229–1238

    Article  Google Scholar 

  14. Wiegmann L, Boes S, de ZeLicourt DD, Thamsen B, Schmid Daners M, Meboldt M et al (2018) Blood pump design variations and their influence on hydraulic performance and indicators of hemocompatibility. Ann Biomed Eng 46:417–428

    Article  CAS  Google Scholar 

  15. Heck LM, Yen A, Snyder TA, O’Rear EA, Papavassiliou V (2017) Flowfield simulations and hemolysis estimated for the food and drug administration critical path initiative centrifugal blood pump. Artif Organs 41:E129–E140

    Article  Google Scholar 

  16. Kannojiya V, Das AK, Das PK (2020) Numerical simulation of centrifugal and hemodynamically levitated LVAD for performance improvement. Artif Organs 44(2):E1–E19

    Article  Google Scholar 

  17. Yu J, Zhang X (2016) Hydrodynamic and hemolysis analysis on distance and clearance between impeller and diffuser of axial blood pump. J Mech Med Biol 16(1):1650014

    Article  Google Scholar 

  18. Good BC, Manning KB (2020) Computational modeling of the food and drug administration’s benchmark centrifugal blood pump. Artif Organs 44(7):E263–E276

    Article  Google Scholar 

  19. Karmonik C, Partovi S, Loebe M, Schmack B, Weymann A, Lumsden AB, Karck M, Ruhparwar A (2014) Computational fluid dynamics in patients with continuous-flow left ventricular assist device support show hemodynamic alterations in the ascending aorta. J Thorac Cardiovasc Surg 147(4):1326-1333.e1. https://doi.org/10.1016/j.jtcvs.2013.09.069

    Article  PubMed  Google Scholar 

  20. Aliseda A, Chivukula VK, Mcgah P, Prisco AR, Beckman JA, Garcia GJ, Mokadam NA, Mahr C (2017) LVAD outflow graft angle and thrombosis risk. ASAIO J Jan/Feb 63(1):14–23. https://doi.org/10.1097/MAT.0000000000000443

    Article  Google Scholar 

  21. Kasinpila P, Kong S, Fong R, Shad R, Kaiser AD, Marsden AL, Woo YJ, Hiesinger W (2020) Use of patient-specific computational models for optimization of aortic insufficiency after implantation of left ventricular assist device. J Thorac Cardiovasc Surg 15:S0022–5223(20)31173–9. doi: https://doi.org/10.1016/j.jtcvs.2020.04.164.

  22. Aigner P, Schweiger M, Fraser K et al (2020) Ventricular flow field visualization during mechanical circulatory support in the assisted isolated beating heart. Ann Biomed Eng 48:794–804. https://doi.org/10.1007/s10439-019-02406-x

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Wang J, Peng J, Huo M, Yang Z, Giridharan GA, Luan Y, Qin K (2021) Effects of a short-term left ventricular assist device on hemodynamics in a heart failure patient-specific aorta model: a CFD study. Front Physiol 12:1518

    CAS  Google Scholar 

  24. Ghodrati M, Maurer A, Schlöglhofer T, Khienwad T, Zimpfer D, Beitzke D, Zonta F, Moscato F, Schima H, Aigner P (2020) The influence of left ventricular assist device inflow cannula position on thrombosis risk. Artif Organs 44(9):939–946

    Article  Google Scholar 

  25. Su B, Wang X, Kabinejadian F, Chin C, Le TT, Zhang JM (2019) Effects of left atrium on intraventricular flow in numerical simulations. Comput Biol Med 106:46–53

    Article  Google Scholar 

  26. Kannojiya V, Das AK, Das PK (2020) Proposal of hemodynamically improved design of an axial flow blood pump for LVAD. Med Biol Eng Comput 58(2):401–418

    Article  Google Scholar 

  27. GiersiepenM WLJ, Opitz R, Reul H (1990) Estimation of shear stress-related blood damage in heart valve prostheses in vitro comparison of 25 aortic valves. Int J Artif Organs 13(5):300–306

    Article  Google Scholar 

  28. Taskin ME, Fraser KH, Zhang T, Gellman B, Fleischli A, Dasse KA et al (2010) Computational characterization of flow and hemolytic performance of the UltraMag blood pump for circulatory support. Artif Organs 34:1099–1113

    Article  Google Scholar 

  29. Faghig MM, Sharp MK (2016) Extending the power-law hemolysis model to complex flows. J Biomech Eng 138:124504–124511

    Article  Google Scholar 

  30. Caruso MV, Gramigna V, Rossi M, Serraino GF, Renzulli A, Fragomeni G (2015) A computational fluid dynamics comparison between different outflow graft anastomosis locations of left ventricular assist device (LVAD) in a patient-specific aortic model. Int J Numer Method Biomed Eng. 31(2)

  31. Goldstein DJ, Oz MC, Rose EA (1998) Implantable left ventricular assist devices. N Eng J Med 339(21):1522–1533

    Article  CAS  Google Scholar 

  32. Dahl SK, Thomassen E, Hellevik LR et al (2012) Impact of pulmonary venous locations on the intra-atrial flow and the mitral valve plane velocity profile. Cardiovasc Eng Tech 3:269–281

    Article  Google Scholar 

  33. Sun A, Zhao B, Ma K, Zhou Z, He L, Li R, Yuan C (2017) Accelerated phase contrast flow imaging with direct complex difference reconstruction. Magn Reson Med 77:1036–1048

    Article  Google Scholar 

  34. Ahmad Bakir A, Al Abed A, Stevens MC, Lovell NH, Dokos S (2018) A multiphysics biventricular cardiac model: simulations with a left-ventricular assist device. Front Physiol. 9:1259. https://doi.org/10.3389/fphys.2018.01259 (Published 2018 Sep 11)

    Article  PubMed  PubMed Central  Google Scholar 

  35. Doost SN, Zhong L, Su B, Morsi YS (2016) The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle. Comput Methods Programs Biomed 127:232–247

    Article  Google Scholar 

  36. Kannojiya V, Das AK, Das PK (2021) Simulation of blood as fluid: a review from rheological aspects. IEEE Rev Biomed Eng 14:327–341

    Article  Google Scholar 

  37. Khan M, Sardar H, Gulzar MM, Alshomrani AS (2018) On multiple solutions of non-Newtonian Carreau fluid flow over an inclined shrinking sheet. Results Phys 8:926–932

    Article  Google Scholar 

  38. Cho YI, Kensey KR (1991) Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel Part 1: Steady flows. Biorheology 28(3–4):241–262. https://doi.org/10.3233/bir-1991-283-415

    Article  CAS  PubMed  Google Scholar 

  39. Johnston BM, Johnston PR, Corney S, Kilpartrick D (2004) Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J Biomech 37:709–720

    Article  Google Scholar 

  40. Mamun K, Rahman MM, Akhter MN, Ali M (2006) Physiological non-Newtonian blood flow through single stenosed artery. AIP Conf Proc. 2006;1754, Art. no. 040001

  41. Grigoriadis GI, Sakellarios AI, Kosmidou I, Naka KK, Ellis C, Michalis LK, Fotiadis DI (2020) Wall shear stress alterations at left atrium and left atrial appendage employing abnormal blood velocity profiles. Annu Int Conf IEEE Eng Med Biol Soc. 2565–2568.

  42. Dean Vucinic TY, Aksenov AA (2016) Human heart blood flow simulations based on CFD Int. J Fluid Heat Transfer 1:15–34

    Google Scholar 

  43. Sang X, Zhou X (2017) Investigation of hydraulic performance in an axial-flow blood pump with different guide vane outlet angle. Adv Mech Eng 9(8):1–11

    Article  Google Scholar 

  44. Bensalah ZM, Bollache E, Kachenoura N et al (2012) Ascending aorta backward flow parameters estimated from phase-contrast cardiovascular magnetic resonance data: new indices of arterial aging. J Cardiovasc Magn Reson 14:P128. https://doi.org/10.1186/1532-429X-14-S1-P128

    Article  PubMed Central  Google Scholar 

  45. Leeuwenburgh BP, Helbing WA, Steendijk P, Schoof PH, Baan J (2003) Effects of acute left ventricular unloading on right ventricular function in normal and chronic right ventricular pressure-overloaded lambs. J Thorac Cardiovasc Surg 125:481–490

    Article  Google Scholar 

  46. Callaghan FM, Grieve SM (2018) Normal patterns of thoracic aortic wall shear stress measured using four-dimensional flow MRI in a large population. Am J Physiol Heart Circ Physiol 315(5):H1174–H1181. https://doi.org/10.1152/ajpheart.00017.2018

    Article  CAS  PubMed  Google Scholar 

  47. De Wachter DS, Verdonck PR, Verhoeven RF, Hombrouckx RO (1996) Red cell injury assessed in a numericalmodel of a peripheral dialysis needle. ASAIO J 42:524–529

    Article  Google Scholar 

  48. Etli M, Canbolat G, Karahan O et al (2021) Numerical investigation of patient-specific thoracic aortic aneurysms and comparison with normal subject via computational fluid dynamics (CFD). Med Biol Eng Comput 59:71–84

    Article  Google Scholar 

  49. Sacco F, Paun B, Lehmkuhl O, Iles TL, Iaizzo PA, Houzeaux G, Vázquez M, Butakoff C, Aguado-Sierra J (2018) Left ventricular trabeculations decrease the wall shear stress and increase the intra-ventricular pressure drop in CFD simulations. Front Physiol 30(9):458

    Article  Google Scholar 

  50. Lopes D, Puga H, Teixeira JC, Teixeira SF (2019) Influence of arterial mechanical properties on carotid blood flow: comparison of CFD and FSI studies. Int J Mech Sci 160:209–218

    Article  Google Scholar 

  51. Torii R, Wood NB, Hadjiloizou N, Dowsey AW, Wright AR, Hughes AD et al (2009) Fluid–structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms. Commun Numer Meth En 25(5):565–580

    Article  Google Scholar 

Download references

Acknowledgements

This research work was supported by the Ministry of Human Resource Development (MHRD) and Indian Council of Medical Research (ICMR) under the IMPRINT scheme (award number 3-18/2015-TSI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Kannojiya.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannojiya, V., Das, A.K. & Das, P.K. Effect of left ventricular assist device on the hemodynamics of a patient-specific left heart. Med Biol Eng Comput 60, 1705–1721 (2022). https://doi.org/10.1007/s11517-022-02572-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02572-6

Keywords