Skip to main content

Advertisement

Log in

The helical axis of anatomical joints: calculation methods, literature review, and software implementation

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The calculation of the helical axis, a.k.a. screw axis, is a functional technique that was introduced for the characterization of the motion and the stability of a human joint. Examples are its applications in the design of prostheses and its use for evaluating the joint performance in post-operatory follow-up. The typical way of studying the variations in the helical axis is to instantaneously compare it to some reference. The reference is typically assumed as (i) an anatomical or geometrical reference (e.g., the condyle to condyle axis or an anatomical plane); (ii) a functional reference, i.e., some axis calculated in a functional way. Calculating the helical axis means determining its orientation and its position, based on the recorded motion of the joint. This paper reviewed the calculation methods of the helical axis, its clinical applications, and the most relevant findings. The operative equations of the most common procedures were clearly and synthetically illustrated. More in detail, the focus of this review was set on the calculation of (i) the instantaneous helical axis; (ii) the finite helical axis; (iii) the average helical axis; (iv) a functional coordinate system attached to the helical axis; and (v) the analysis of the time variations of helical axis. The calculation of those quantities was implemented in MATLAB and the code was proposed as supplementary material. The calculation of the discussed quantities was demonstrated on a sample dataset.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ancillao A (2018) Stereophotogrammetry in functional evaluation: history and modern protocols. In: SpringerBriefs in applied sciences and technology. pp 1–29

  2. Ancillao A, Rossi S, Cappa P (2017) Analysis of knee strength measurements performed by a hand-held multicomponent dynamometer and optoelectronic system. IEEE Trans Instrum Meas 66:85–92. https://doi.org/10.1109/TIM.2016.2620799

    Article  Google Scholar 

  3. Ancillao A (2019) An experimental analysis of the sources of inaccuracy occurring in hip strength measurements conducted by hand held dynamometry. Eur J Phys 0:1–6. https://doi.org/10.1080/21679169.2019.1646802

    Article  Google Scholar 

  4. Ancillao A, Savastano B, Galli M, Albertini G (2017) Three dimensional motion capture applied to violin playing: a study on feasibility and characterization of the motor strategy. Comput Methods Prog Biomed 149:19–27. https://doi.org/10.1016/j.cmpb.2017.07.005

    Article  Google Scholar 

  5. Ancillao A (2018) A new method for the quality assurance of strength measurements. In: SpringerBriefs in applied sciences and technology. pp 31–88

  6. Rutz E, Baker R, Tirosh O et al (2011) Tibialis anterior tendon shortening in combination with Achilles tendon lengthening in spastic equinus in cerebral palsy. Gait Posture 33:152–157. https://doi.org/10.1016/j.gaitpost.2010.11.002

    Article  PubMed  Google Scholar 

  7. Brunner R, Rutz E (2013) Biomechanics and muscle function during gait. J Child Orthop 7:367–371. https://doi.org/10.1007/s11832-013-0508-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ozada N, Ghafoorpoor Yazdi S, Khandan A, Karimzadeh M (2017) A brief review of reverse shoulder prosthesis: arthroplasty, complications, revisions, and development. Trauma Mon 23. https://doi.org/10.5812/traumamon.58163

  9. Ancillao A (2019) An experimental analysis of the sources of inaccuracy occurring in hip strength measurements conducted by hand held dynamometry. Eur J Phys. https://doi.org/10.1080/21679169.2019.1646802

  10. Steinwender G, Saraph V, Scheiber S et al (2000) Intrasubject repeatability of gait analysis data in normal and spastic children. Clin Biomech 15:134–139. https://doi.org/10.1016/S0268-0033(99)00057-1

    Article  CAS  Google Scholar 

  11. Vismara L, Cimolin V, Galli M, et al (2016) Osteopathic manipulative treatment improves gait pattern and posture in adult patients with Prader–Willi syndrome. Int J Osteopath Med 19:35–43. https://doi.org/10.1016/j.ijosm.2015.09.001

  12. Ancillao A, van der Krogt MM, Buizer AI et al (2017) Analysis of gait patterns pre- and post-single event multilevel surgery in children with cerebral palsy by means of offset-wise movement analysis profile and linear fit method. Hum Mov Sci 55:145–155. https://doi.org/10.1016/j.humov.2017.08.005

    Article  PubMed  Google Scholar 

  13. Woltring HJ, Huiskes R, de Lange A, Veldpaus FE (1985) Finite centroid and helical axis estimation from noisy landmark measurements in the study of human joint kinematics. J Biomech 18:379–389. https://doi.org/10.1016/0021-9290(85)90293-3

    Article  CAS  PubMed  Google Scholar 

  14. Ancillao A, Vochten M, Aertbeliën E et al (2020) Estimating the instantaneous screw axis and the screw axis invariant descriptor of motion by means of inertial sensors: an experimental study with a mechanical hinge joint and comparison to the optoelectronic system. Sensors (Switzerland) 20. https://doi.org/10.3390/s20010049

  15. Mozzi G (1763) Discorso matematico sopra il rotamento momentaneo dei corpi. Stamperia del Donato Campo, Napoli

  16. Chasles M (1830) Note sur les propriétés génerales du système de deux corps semblables entr’eux et placés d’une manière quelconque dans l’espace; et sur le déplacement fini ou infiniment petit d’un corps solide libre [A note on the general properties of a system of two si. Bull des Sci Mathématiques, Férussac 14:321–326

  17. Martelli S (2003) New method for simultaneous anatomical and functional studies of articular joints and its application to the human knee. Comput Methods Prog Biomed 70:223–240. https://doi.org/10.1016/S0169-2607(02)00028-7

    Article  Google Scholar 

  18. Martelli S, Zaffagnini S, Falcioni B, Marcacci M (2000) Intraoperative kinematic protocol for knee joint evaluation. Comput Methods Prog Biomed 62:77–86. https://doi.org/10.1016/S0169-2607(99)00055-3

    Article  CAS  Google Scholar 

  19. Sheehan FT (2010) The instantaneous helical axis of the subtalar and talocrural joints: a non-invasive in vivo dynamic study. J Foot Ankle Res 3:13. https://doi.org/10.1186/1757-1146-3-13

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ancillao A (2018) Modern functional evaluation methods for muscle strength and gait analysis. Springer International Publishing, International

  21. van den Bogert AJ, Reinschmidt C, Lundberg A (2008) Helical axes of skeletal knee joint motion during running. J Biomech 41:1632–1638. https://doi.org/10.1016/j.jbiomech.2008.03.018

    Article  PubMed  Google Scholar 

  22. Geier A, Aschemann H, D’Lima D et al (2018) Force closure mechanism modeling for musculoskeletal multibody simulation. IEEE Trans Biomed Eng 65:2471–2482. https://doi.org/10.1109/TBME.2018.2800293

    Article  PubMed  Google Scholar 

  23. Shiavi R, Limbird T, Frazer M et al (1987) Helical motion analysis of the knee—II. Kinematics of uninjured and injured knees during walking and pivoting. J Biomech 20:653–665. https://doi.org/10.1016/0021-9290(87)90032-7

    Article  CAS  PubMed  Google Scholar 

  24. Hart RA, Mote CD, Skinner HB (1991) A finite helical axis as a landmark for kinematic reference of the knee. J Biomech Eng 113:215–222. https://doi.org/10.1115/1.2891237

    Article  CAS  PubMed  Google Scholar 

  25. Frigo C, Rabuffetti M (1998) Multifactorial estimation of hip and knee joint centres for clinical application of gait analysis. Gait Posture 8:91–102. https://doi.org/10.1016/S0966-6362(98)00031-9

    Article  CAS  PubMed  Google Scholar 

  26. Leardini A, Chiari L, Della CU, Cappozzo A (2005) Human movement analysis using stereophotogrammetry: part 3. Soft tissue artifact assessment and compensation. Gait Posture 21:212–225. https://doi.org/10.1016/j.gaitpost.2004.05.002

    Article  PubMed  Google Scholar 

  27. Chèze L, Fregly BJ, Dimnet J (1998) Determination of joint functional axes from noisy marker data using the finite helical axis. Hum Mov Sci 17:1–15. https://doi.org/10.1016/S0167-9457(97)00018-3

    Article  Google Scholar 

  28. Markström JL, Grip H, Schelin L, Häger CK (2020) Individuals with an anterior cruciate ligament–reconstructed knee display atypical whole body movement strategies but normal knee robustness during side-hop landings: a finite helical axis analysis. Am J Sports Med 48:1117–1126. https://doi.org/10.1177/0363546520910428

    Article  PubMed  PubMed Central  Google Scholar 

  29. Temporiti F, Cescon C, Adamo P et al (2020) Dispersion of knee helical axes during walking in young and elderly healthy subjects. J Biomech 109:109944. https://doi.org/10.1016/j.jbiomech.2020.109944

    Article  PubMed  Google Scholar 

  30. Grip H, Tengman E, Häger CK (2015) Dynamic knee stability estimated by finite helical axis methods during functional performance approximately twenty years after anterior cruciate ligament injury. J Biomech 48:1906–1914. https://doi.org/10.1016/j.jbiomech.2015.04.016

    Article  PubMed  Google Scholar 

  31. Barton KI, Shekarforoush M, Heard BJ et al (2019) Three-dimensional in vivo kinematics and finite helical axis variables of the ovine stifle joint following partial anterior cruciate ligament transection. J Biomech 88:78–87. https://doi.org/10.1016/j.jbiomech.2019.03.021

    Article  PubMed  Google Scholar 

  32. Rosenbaum D (2009) Human motor control, 2nd edn. Academic Press

    Google Scholar 

  33. Markström JL, Grip H, Schelin L, Häger CK (2019) Dynamic knee control and movement strategies in athletes and non-athletes in side hops: implications for knee injury. Scand J Med Sci Sports 29:sms.13432. https://doi.org/10.1111/sms.13432

  34. Wolf A, Degani A (2007) Recognizing knee pathologies by classifying instantaneous screws of the six degrees-of-freedom knee motion. Med Biol Eng Comput 45:475–482. https://doi.org/10.1007/s11517-007-0174-1

    Article  PubMed  Google Scholar 

  35. Qin W, Kolooshani A, Kolahdooz A et al (2021) Coating the magnesium implants with reinforced nanocomposite nanoparticles for use in orthopedic applications. Colloids Surfaces A Physicochem Eng Asp 621:126581. https://doi.org/10.1016/j.colsurfa.2021.126581

    Article  CAS  Google Scholar 

  36. Esmaeili S, Akbari Aghdam H, Motififard M et al (2020) A porous polymeric–hydroxyapatite scaffold used for femur fractures treatment: fabrication, analysis, and simulation. Eur J Orthop Surg Traumatol 30:123–131. https://doi.org/10.1007/s00590-019-02530-3

    Article  PubMed  Google Scholar 

  37. Bagherifard A, Joneidi Yekta H, Akbari Aghdam H et al (2020) Improvement in osseointegration of tricalcium phosphate-zircon for orthopedic applications: an in vitro and in vivo evaluation. Med Biol Eng Comput 58:1681–1693. https://doi.org/10.1007/s11517-020-02157-1

    Article  PubMed  Google Scholar 

  38. Millán Vaquero RM, Vais A, Dean Lynch S et al (2016) Helical axis data visualization and analysis of the knee joint articulation. J Biomech Eng 138. https://doi.org/10.1115/1.4034005

  39. Stokdijk M, Meskers CGM, Veeger HEJ et al (1999) Determination of the optimal elbow axis for evaluation of placement of prostheses. Clin Biomech 14:177–184. https://doi.org/10.1016/S0268-0033(98)00057-6

    Article  CAS  Google Scholar 

  40. Schwartz MH, Rozumalski A (2005) A new method for estimating joint parameters from motion data. J Biomech 38:107–116. https://doi.org/10.1016/j.jbiomech.2004.03.009

    Article  PubMed  Google Scholar 

  41. Barre A, Thiran J-P, Jolles BM et al (2013) Soft tissue artifact assessment during treadmill walking in subjects with total knee arthroplasty. IEEE Trans Biomed Eng 60:3131–3140. https://doi.org/10.1109/TBME.2013.2268938

    Article  PubMed  Google Scholar 

  42. Zumbrunn T, Schütz P, von Knoch F et al (2019) Medial unicompartmental knee arthroplasty in ACL-deficient knees is a viable treatment option: in vivo kinematic evaluation using a moving fluoroscope. Knee Surgery, Sport Traumatol Arthrosc. https://doi.org/10.1007/s00167-019-05594-0

  43. Akbari Shandiz M, Boulos P, Saevarsson SK et al (2016) Changes in knee kinematics following total knee arthroplasty. Proc Inst Mech Eng Part H J Eng Med 230:265–278. https://doi.org/10.1177/0954411916632491

    Article  Google Scholar 

  44. Reinschmidt C, van den Bogert A, Lundberg A et al (1997) Tibiofemoral and tibiocalcaneal motion during walking: external vs. skeletal markers. Gait Posture 6:98–109. https://doi.org/10.1016/S0966-6362(97)01110-7

    Article  Google Scholar 

  45. Ramsey DK, Wretenberg PF (1999) Biomechanics of the knee: methodological considerations in the in vivo kinematic analysis of the tibiofemoral and patellofemoral joint. Clin Biomech 14:595–611. https://doi.org/10.1016/S0268-0033(99)00015-7

    Article  CAS  Google Scholar 

  46. Davis RB, Ounpuu S, Gage JR (1991) A gait analysis data collection and reduction technique. Hum Mov Sci 10:575–587

    Article  Google Scholar 

  47. Ferrari A, Benedetti MG, Pavan E et al (2008) Quantitative comparison of five current protocols in gait analysis. Gait Posture 28:207–216. https://doi.org/10.1016/j.gaitpost.2007.11.009

    Article  PubMed  Google Scholar 

  48. Besier TF, Sturnieks DL, Alderson JA, Lloyd DG (2003) Repeatability of gait data using a functional hip joint centre and a mean helical knee axis. J Biomech 36:1159–1168. https://doi.org/10.1016/S0021-9290(03)00087-3

    Article  PubMed  Google Scholar 

  49. Temporiti F, Furone R, Cescon C et al (2019) Dispersion of helical axes during shoulder movements in young and elderly subjects. J Biomech 88:72–77. https://doi.org/10.1016/j.jbiomech.2019.03.018

    Article  PubMed  Google Scholar 

  50. Ancillao A, Aertbeliën E, De Schutter J (2021) Effect of the soft tissue artifact on marker measurements and on the calculation of the helical axis of the knee during a gait cycle: a study on the CAMS-Knee data set. Hum Mov Sci 80:102866. https://doi.org/10.1016/j.humov.2021.102866

    Article  PubMed  Google Scholar 

  51. Rueterbories J, Spaich EG, Larsen B, Andersen OK (2010) Methods for gait event detection and analysis in ambulatory systems. Med Eng Phys 32:545–552. https://doi.org/10.1016/j.medengphy.2010.03.007

    Article  PubMed  Google Scholar 

  52. Ancillao A, Tedesco S, Barton J, O’Flynn B (2018) Indirect measurement of ground reaction forces and moments by means of wearable inertial sensors: a systematic review. Sensors 18:2564. https://doi.org/10.3390/s18082564

    Article  PubMed Central  Google Scholar 

  53. Cappozzo A, Della Croce U, Leardini A, Chiari L (2005) Human movement analysis using stereophotogrammetry part 1: theoretical background. Gait Posture 21:186–196. https://doi.org/10.1016/j.gaitpost.2004.01.010

    Article  PubMed  Google Scholar 

  54. Ancillao A, Vochten M, Aertbeliën E et al (2019) Estimating the instantaneous screw axis and the screw axis invariant descriptor of motion by means of inertial sensors: an experimental study with a mechanical hinge joint and comparison to the optoelectronic system. Sensors 20:49. https://doi.org/10.3390/s20010049

    Article  PubMed Central  Google Scholar 

  55. Spoor CW, Veldpaus FE (1980) Rigid body motion calculated from spatial co-ordinates of markers. J Biomech 13:391–393. https://doi.org/10.1016/0021-9290(80)90020-2

    Article  CAS  PubMed  Google Scholar 

  56. Shekarforoush M, Beveridge JE, Hart DA et al (2018) Correlation between translational and rotational kinematic abnormalities and osteoarthritis-like damage in two in vivo sheep injury models. J Biomech 75:67–76. https://doi.org/10.1016/j.jbiomech.2018.04.046

    Article  PubMed  Google Scholar 

  57. De Schutter J (2010) Invariant description of rigid body motion trajectories. J Mech Robot 2:011004. https://doi.org/10.1115/1.4000524

    Article  Google Scholar 

  58. Ehrig RM, Heller MO, Kratzenstein S et al (2011) The SCoRE residual: a quality index to assess the accuracy of joint estimations. J Biomech 44:1400–1404. https://doi.org/10.1016/j.jbiomech.2010.12.009

    Article  PubMed  Google Scholar 

  59. Ehrig RM, Heller MO (2019) On intrinsic equivalences of the finite helical axis, the instantaneous helical axis, and the SARA approach. A mathematical perspective. J Biomech 84:4–10. https://doi.org/10.1016/j.jbiomech.2018.12.034

    Article  CAS  PubMed  Google Scholar 

  60. Graf B (2008) Quaternions and dynamics. arXiv 2008:

  61. Lawrence RL, Ruder MC, Zauel R, Bey MJ (2020) Instantaneous helical axis estimation of glenohumeral kinematics: the impact of rotator cuff pathology. J Biomech 109:109924. https://doi.org/10.1016/j.jbiomech.2020.109924

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mannel H, Marin F, Claes L, Dürselen L (2004) Establishment of a knee-joint coordinate system from helical axes analysis - a kinematic approach without anatomical referencing. IEEE Trans Biomed Eng 51:1341–1347. https://doi.org/10.1109/TBME.2004.828051

    Article  PubMed  Google Scholar 

  63. Cescon C, Cattrysse E, Barbero M (2014) Methodological analysis of finite helical axis behavior in cervical kinematics. J Electromyogr Kinesiol 24:628–635. https://doi.org/10.1016/j.jelekin.2014.05.004

    Article  PubMed  Google Scholar 

  64. Colle F, Bignozzi S, Lopomo N et al (2012) Knee functional flexion axis in osteoarthritic patients: comparison in vivo with transepicondylar axis using a navigation system. Knee Surgery, Sport Traumatol Arthrosc 20:552–558. https://doi.org/10.1007/s00167-011-1604-z

    Article  CAS  Google Scholar 

  65. Churchill DL, Incavo SJ, Johnson CC, Beynnon BD (1998) The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res 356:111–118. https://doi.org/10.1097/00003086-199811000-00016

    Article  Google Scholar 

  66. Grip H, Häger C (2013) A new approach to measure functional stability of the knee based on changes in knee axis orientation. J Biomech 46:855–862. https://doi.org/10.1016/j.jbiomech.2012.12.015

    Article  CAS  PubMed  Google Scholar 

  67. Blankevoort L, Huiskes R, de Lange A (1990) Helical axes of passive knee joint motions. J Biomech 23:1219–1229. https://doi.org/10.1016/0021-9290(90)90379-H

    Article  CAS  PubMed  Google Scholar 

  68. Thong YK, Woolfson MS, Crowe JA et al (2002) Dependence of inertial measurements of distance on accelerometer noise. Meas Sci Technol 13:1163–1172. https://doi.org/10.1088/0957-0233/13/8/301

    Article  CAS  Google Scholar 

  69. Smołka J, Skublewska-Paszkowska M (2014) Comparison of interpolation methods based on real human motion data. Prz Elektrotechniczny 90(226–229):10.12915/pe.2014.10.54

    Google Scholar 

  70. Clément J, de Guise JA, Fuentes A, Hagemeister N (2018) Comparison of soft tissue artifact and its effects on knee kinematics between non-obese and obese subjects performing a squatting activity recorded using an exoskeleton. Gait Posture 61:197–203. https://doi.org/10.1016/j.gaitpost.2018.01.009

    Article  PubMed  Google Scholar 

Download references

Code availability

The code provided was designed to sequentially calculate the IHA, the FHA, the AHA, and the respective parameters and dispersion analysis. All the quantities were calculated on a sample dataset containing the measurements of an artificial hinge joint.

The MATLAB code can be accessed through the following GitHub repository: https://github.com/Andrea14-ing/IHA_paper.

Please run the example included in the “MAIN.m” script. Further instructions are provided within the file.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Ancillao.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ancillao, A. The helical axis of anatomical joints: calculation methods, literature review, and software implementation. Med Biol Eng Comput 60, 1815–1825 (2022). https://doi.org/10.1007/s11517-022-02576-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02576-2

Keywords