Skip to main content
Log in

Detailed 3D micro-modeling of rat aqueous drainage channels based on two-photon imaging: simulating aqueous humor through trabecular meshwork and Schlemm’s canal by two-way fluid structure interaction approach

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Elevated intraocular pressure (IOP) appears to have a broader impact on increased resistance to aqueous humor (AH) outflow through the conventional aqueous outflow system (AOS). However, it is still unknown how AH drainage resistance is produced or why it becomes increased in glaucoma. It is hard to accurately obtain hydrodynamic parameters of AH within the trabecular meshwork (TM) outflow pathway tissues based on current technology. In this study, we reconstructed the rat AOS model with high-resolution two-photon imaging, and simulated the AH outflow process. The resolution of the two-photon imaging system can be up to 0.5 μm for imaging the AOS tissues. Quite a few morphological parameters of rat TM in conditions of normal and elevated IOP were determined using the experiment integrated with the simulation method. We determined that the TM thickness is 49.51 ± 6.07 μm with an IOP of 5.32 kPa, which significantly differed from the TM thickness of 66.4 ± 5.14 μm in the normal IOP group. Furthermore, 3D reconstruction of local aqueous drainage channels from two-photon microscopy images revealed detailed structures of the AOS and permitted the identification of 3D relationships of Schlemm’s canal, collector channel, and trabecular drainage channels. An algorithm of finite element micro-modeling of the rat TM outflow pathways reveals the importance of TM for mechanical performance, with the potential to assist clinical therapies for glaucoma that seek to steer clear of an abnormal TM.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kang JM, Tanna AP (2021) Glaucoma. Med Clin North Am 105(3):493–510

    Article  PubMed  Google Scholar 

  2. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121:2081–2090

    Article  PubMed  Google Scholar 

  3. Civan MM, Macknight AD (2004) The ins and outs of aqueous humor secretion. Exp Eye Res 78:625–631

    Article  CAS  PubMed  Google Scholar 

  4. Johnson M, McLaren JW, Overby DR (2017) Unconventional aqueous humor outflow: a review. Exp Eye Res 158:94–111

    Article  CAS  PubMed  Google Scholar 

  5. AJBA Labbé abcd, APH et al. (2020) The trabecular meshwork structure, function and clinical implications. A review of the literature. Journal Franais d'Ophtalmologie 43 (7):1–14

  6. Johnson M (2006) What controls aqueous humor outflow resistance? Exp Eye Res 82:545–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barany EH (1954) In vitro studies of the resistance to flow through the angle of the anterior chamber. Acta Soc Med Ups 59:260–276

    CAS  PubMed  Google Scholar 

  8. Gonzalez JM, Ammar MJ, Ko MK, Tan JC (2016) Optimizing two-photon multiple fluorophore imaging of the human trabecular meshwork. Mol Vis 22:203–212

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Usui T, Tomidokoro A, Mishima K et al (2011) Identification of Schlemm’s canal and its surrounding tissues by anterior segment Fourier domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:6934–6939

    Article  PubMed  Google Scholar 

  10. Xin C, Johnstone M, Wang N, Wang RK (2016) OCT study of mechanical properties associated with trabecular meshwork and collector channel motion in human eyes. PLoS ONE 11:e0162048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Riva I, Micheletti E, Oddone F, Bruttini C, Quaranta L (2020) Anterior chamber angle assessment techniques: a review. J Clin Med 9(12):3814

    Article  PubMed Central  Google Scholar 

  12. Hann CR, Bentley MD, Vercnocke A, Ritman EL, Fautsch MP (2011) Imaging the aqueous humor outflow pathway in human eyes by three-dimensional micro-computed tomography (3D micro-CT). Exp Eye Res 92:104–111

    Article  CAS  PubMed  Google Scholar 

  13. Dusak A, Baykara M, Ozkaya G, Erdogan C, Ozcetin H, Tuncel E (2013) Ultrasound biomicroscopic evaluation of anterior segment cysts as a risk factor for ocular hypertension and closure angle glaucoma. Int J Ophthalmol 6:515–520

    PubMed  PubMed Central  Google Scholar 

  14. Mularoni A, Imburgia A, Forlini M, Rania L, Possati GL (2021) Reply: In vivo evaluation of a one-piece foldable sutureless intrascleral fixation lens using ultrasound biomicroscopy and anterior segment optical coherence tomography. J Cataract Refract Surg 47(2):285

    Article  PubMed  Google Scholar 

  15. Palczewska G, Kern TS, Palczewski K (2019) Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium. Methods Mol Biol 1834:333–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bueno JM (2014) Probing the eye more deeply: adaptive optics multiphoton microscopy. Opt Photonics News 25:48–55

    Article  Google Scholar 

  17. Qin Z, He S, Yang C, Yung SY, Qu JY. (2020) Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo. Light: Science & Applications 9(1).

  18. Last JA, Pan T, Ding Y et al (2011) Elastic modulus determination of normal and glaucomatous human trabecular meshwork. Invest Ophthalmol Vis Sci 52:2147–2152

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huang J, Camras LJ, Yuan F (2015) Mechanical analysis of rat trabecular meshwork. Soft Matter 11:2857

    Article  CAS  PubMed  Google Scholar 

  20. Xin C, Johnstone M, Wang N, Wang RK (2016) OCT study of mechanical properties associated with trabecular meshwork and collector channel motion in human eyes. PLoS ONE 11:e0162048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Raghunathan VK, Morgan JT, Park SA et al (2015) Dexamethasone stiffens trabecular meshwork, trabecular meshwork cells, and matrix. Invest Ophthalmol Vis Sci 56:4447–4459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Camras LJ, Stamer WD, Epstein D, Gonzalez P, Yuan F (2014) Circumferential tensile stiffness of glaucomatous trabecular meshwork. Invest Ophthalmol Vis Sci 55:814–823

    Article  PubMed  Google Scholar 

  23. Norman RE, Flanagan JG, Sigal IA, Rausch SM, Tertinegg I, Ethier CR (2011) Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma. Exp Eye Res 93:4–12

    Article  CAS  PubMed  Google Scholar 

  24. Karimi A, Grytz R, Rahmati SM, Girkin CA, Downs JC (2021) Analysis of the effects of finite element type within a 3d biomechanical model of a human optic nerve head and posterior pole. Comput Methods Programs Biomed 198(5):105794

    Article  PubMed  Google Scholar 

  25. Guo JM, Chen ZQ, Chen W, Yan XQ, Wang JM (2020) Numerical simulation of the flow of aqueous humor in the schlemm’s canal. Med Eng Phys 88(1):25–31

    PubMed  Google Scholar 

  26. Wang K, Read AT, Sulchek T, Ethier CR (2017) Trabecular meshwork stiffness in glaucoma. Exp Eye Res 158:3–12

    Article  CAS  PubMed  Google Scholar 

  27. Remé C, Urner U, Aeberhard B (1983) The development of the chamber angle in the rat eye Morphological characteristics of developmental stages. Graefe’s Arch Clin Exp Ophthalmol 220:139

    Article  Google Scholar 

  28. Morrison JC, Fraunfelder FW, Milne ST, Moore CG (1995) Limbal microvasculature of the rat eye. Invest Ophthalmol Vis Sci 36:751–756

    CAS  PubMed  Google Scholar 

  29. Chen CC, Yeh LK, Liu CY et al (2008) Morphological differences between the trabecular meshworks of zebrafish and mammals. Curr Eye Res 33:59–72

    Article  PubMed  CAS  Google Scholar 

  30. Yuan L, Overby DR, Boussommiercalleja A, Stamer WD, Ethier CR (2011) Outflow physiology of the mouse eye: pressure dependence and washout. Invest Ophthalmol Vis Sci 52:1865–1871

    Article  Google Scholar 

  31. Zhang J, Ren L, Mei X, Xu Q, Zheng W, Liu Z (2016) Microstructure visualization of conventional outflow pathway and finite element modeling analysis of trabecular meshwork. Biomed Eng Online 15:162

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xi M, Lin R, Qiang X, Wei Z, Liu ZC. (2015) Effect of persistent high intraocular pressure on microstructure and hydraulic permeability of trabecular meshwork. Chinese Physics B 24.

  33. Zheng W, Wu Y, Winter P et al (2017) Adaptive optics improves multiphoton super-resolution imaging. Nat Methods 14:869–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li D, Zheng W, Qu JY (2009) Two-photon autofluorescence microscopy of multicolor excitation. Opt Lett 34:202–204

    Article  CAS  PubMed  Google Scholar 

  35. Tamm ER (2009) The trabecular meshwork outflow pathways: structural and functional aspects. Exp Eye Res 88:648–655

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Zou Q, Shan X, Xu H, Zhang D, Liu Z (2021) Research on trabecular meshwork segmentation based on deep learning. Biomed J Sci Tech Res 33:25455–25460

    Google Scholar 

  37. Swain DL, Ho J, Lai J, Gong H (2015) Shorter scleral spur in eyes with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 56:1638–1648

    Article  PubMed  PubMed Central  Google Scholar 

  38. Goel M, Picciani RG, Lee RK, Bhattacharya SK (2010) Aqueous humor dynamics: a review. Open Ophthalmol J 4:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aihara M, Lindsey JD, Weinreb RN (2003) Episcleral venous pressure of mouse eye and effect of body position. Curr Eye Res 27:355–362

    Article  PubMed  Google Scholar 

  40. Krakau CE, Widakowich J, Wilke K (1973) Measurements of the episcleral venous pressure by means of an air jet. Acta Ophthalmol 51:185–196

    Article  CAS  Google Scholar 

  41. Kumar S, Acharya S, Beuerman R, Palkama A (2006) Numerical solution of ocular fluid dynamics in a rabbit eye: parametric effects. Ann Biomed Eng 34:530–544

    Article  PubMed  Google Scholar 

  42. Masihzadeh O, Lei TC, Ammar DA, Kahook MY, Gibson EA (2012) A multiphoton microscope platform for imaging the mouse eye. Mol Vis 18:1840–1848

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chu ER Jr, Tan GJJC (1900) Tissue-based imaging model of human trabecular meshwork. J Ocular Pharmacol Ther Official J Assoc Ocular Pharmacol Ther 30:191–201

    Article  CAS  Google Scholar 

  44. Zhang X, Liu N, Mak PU et al (2016) Three-dimensional segmentation and quantitative measurement of the aqueous outflow system of intact mouse eyes based on spectral two-photon microscopy techniques. Invest Ophthalmol Vis Sci 57:3159–3167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Masihzadeh O, Ammar DA, Kahook MY, Gibson EA, Lei TC (2013) Direct trabecular meshwork imaging in porcine eyes through multiphoton gonioscopy. J Biomed Opt 18:036009

    Article  PubMed  PubMed Central  Google Scholar 

  46. Keller KE, Acott TS (2013) The juxtacanalicular region of ocular trabecular meshwork: a tissue with a unique extracellular matrix and specialized function. J Ocular Bio 1:3

    Google Scholar 

  47. Gong L, Cha EDK, Gong H (2016) Hydrodynamic and morphological changes along the trabecular outflow pathway in POAG eyes. Invest Ophthalmol Vis Sci 57:5141–5141

    Google Scholar 

  48. Lohle FW (1958) Application of Poiseuille’s law to aqueous outflow. Amaarch Ophthalmol 60:290

    Article  Google Scholar 

  49. Martínez Sánchez GJ, Pozo CED, Medina JAR et al (2020) Numerical simulation of the aqueous humor flow in the eye drainage system; a healthy and pathological condition comparison. Med Eng Phys 83:82–92

    Article  PubMed  Google Scholar 

  50. Ethier CR, Kamm RD, Palaszewski BA, Johnson MC, Richardson TM (1986) Calculations of flow resistance in the juxtacanalicular meshwork. Invest Ophthalmol Vis Sci 27:1741–1750

    CAS  PubMed  Google Scholar 

  51. Villamarin A, Roy S, Hasballa R, Vardoulis O, Reymond P, Stergiopulos N (2012) 3D simulation of the aqueous flow in the human eye. Med Eng Phys 34:1462–1470

    Article  PubMed  Google Scholar 

  52. Johnstone MA (2004) The aqueous outflow system as a mechanical pump: evidence from examination of tissue and aqueous movement in human and non-human primates. J Glaucoma 13:421–438

    Article  PubMed  Google Scholar 

  53. Mäepea O, Bill A (1989) The pressures in the episcleral veins, Schlemm’s canal and the trabecular meshwork in monkeys: effects of changes in intraocular pressure. Exp Eye Res 49:645–663

    Article  PubMed  Google Scholar 

  54. Overby DR, Stamer WD, Johnson M (2009) The changing paradigm of outflow resistance generation: towards synergistic models of the JCT and inner wall endothelium. Exp Eye Res 88:656–670

    Article  CAS  PubMed  Google Scholar 

  55. Reneman RS, Arts T, Hoeks AP (2006) Wall shear stress an important determinant of endothelial cell function and structure in the arterial system in vivo Discrepancies with theory. J Vascular Res 43:251

    Article  Google Scholar 

  56. Asrani S, Zeimer R, Wilensky J, Gieser D, Vitale S, Lindenmuth K (2000) Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J Glaucoma 9:134–142

    Article  CAS  PubMed  Google Scholar 

  57. Gerlach JC, Hentschel F, Spatkowski G, Zeilinger K, Smith MD, Neuhaus P (1997) Cell detachment during sinusoidal reperfusion after liver preservation: an in vitro model. Transplantation 64:907–912

    Article  CAS  PubMed  Google Scholar 

  58. Gabelt BT, Kaufman PL (2005) Changes in aqueous humor dynamics with age and glaucoma. Prog Retin Eye Res 24:612–637

    Article  CAS  PubMed  Google Scholar 

  59. Yang CYC, Liu Y, Lu Z, Ren R, Gong H (2013) Effects of Y27632 on aqueous humor outflow facility with changes in hydrodynamic pattern and morphology in human eyes. Invest Ophthalmol Vis Sci 54:5859–5870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tian B, Geiger B, Epstein DL, Kaufman PL (2000) Cytoskeletal involvement in the regulation of aqueous humor outflow. Invest Ophthalmol Vis Sci 41:619–623

    CAS  PubMed  Google Scholar 

  61. Wiederholt M, Thieme H, Stumpff F (2000) The regulation of trabecular meshwork and ciliary muscle contractility. Prog Retin Eye Res 19:271–295

    Article  CAS  PubMed  Google Scholar 

  62. Zhang J, Qian X, Zhang H, Liu Z (2018) Fluid-structure interaction simulation of aqueous outflow system in response to juxtacanalicular meshwork permeability changes with a two-way coupled method. Comput Model Eng Sci 116(2):301–314

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 31570952, 10802053, 81471702), the Natural Science Fund for Colleges and Universities in Jiangsu Province (19KJB310024), Startup Fund for Youth Talent in Xuzhou Medical University (D2019009), Science and Technology Development Program of Xuzhou (KC19194).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Zhang, Hang Xu or Zhicheng Liu.

Ethics declarations

Ethical approval

In our research, handling and euthanasia of rats were approved by the National Institute of Health Guide for the Care and Use of Laboratory Animals. And the animal experiments were compliant with the Institutional Animal Care and Use Committee of China.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Qian, X., Zhang, H. et al. Detailed 3D micro-modeling of rat aqueous drainage channels based on two-photon imaging: simulating aqueous humor through trabecular meshwork and Schlemm’s canal by two-way fluid structure interaction approach. Med Biol Eng Comput 60, 1915–1927 (2022). https://doi.org/10.1007/s11517-022-02580-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02580-6

Keywords

Navigation