Skip to main content

Advertisement

Log in

Integrating patient symptoms, clinical readings, and radiologist feedback with computer-aided diagnosis system for detection of infectious pulmonary disease: a feasibility study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Automatic computer-aided diagnosis (CAD) system has been widely used as an assisting tool for mass screening and risk assessment of infectious pulmonary diseases (PDs). However, such a system still lacks clinical acceptability and trust due to the integration gap between the patient’s metadata, radiologist feedback, and the CAD system. This paper proposed three integration frameworks, namely—direct integration (DI), rule-based integration (RBI), and weight-based integration (WBI). The proposed framework helps clinicians diagnose lung inflammation and provide an end-to-end robust diagnostic system. Initially, the feasibility of integrating patients’ symptoms, clinical pathologies, and radiologist feedback with CAD system to improve the classification performance is investigated. Subsequently, the patient’s metadata and radiologist feedback are integrated with the CAD system using the proposed integration frameworks. The proposed method’s performance is evaluated using a private dataset consisting of 70 chest X-ray (CXR) images (31 COVID-19, 14 other diseases, and 25 normal). The obtained results reveal that the proposed WBI achieved the highest classification performance (accuracy = 98.18%, F1 score = 97.73%, and Matthew’s correlation coefficient = 0.969) compared to DI and RI. The generalization capability of the proposed framework is also verified from an external validation set. Furthermore, the Friedman average ranking and Shaffer and Holm post hoc statistical methods reveal the obtained results’ statistical significance.

Graphical abstract

Methodological diagram of proposed integration frameworks

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, Chhattisgarh, India. Website: https://ptjnmcraipur.in/

References

  1. Filho PPR, Barros ACdS, Ramalho GLB et al (2019) Automated recognition of lung diseases in CT images based on the optimum-path forest classifier. Neural Comput Appl 31:901–914. https://doi.org/10.1007/s00521-017-3048-y

    Article  Google Scholar 

  2. Chouhan V, Singh SK, Khamparia A, et al (2020) A novel transfer learning based approach for pneumonia detection in chest X-ray images. Appl Sci 10https://doi.org/10.3390/app10020559

  3. (2019) Global Tuberculosis Report 2019. In: World Heal. Organ. https://www.who.int/tb/publications/global_report/en/. Accessed 13 Mar 2020

  4. (2020) WHO Coronavirus Disease (COVID-19) Dashboard. In: World Heal. Organ. https://covid19.who.int/. Accessed 16 Oct 2020

  5. Jorritsma W, Cnossen F, Van Ooijen PMA (2015) Improving the radiologist-CAD interaction: designing for appropriate trust. Clin Radiol 70:115–122. https://doi.org/10.1016/j.crad.2014.09.017

    Article  CAS  PubMed  Google Scholar 

  6. Chandra TB, Verma K, Singh BK et al (2020) Automatic detection of tuberculosis related abnormalities in chest X-ray images using hierarchical feature extraction scheme. Expert Syst Appl 158:113514. https://doi.org/10.1016/j.eswa.2020.113514

    Article  Google Scholar 

  7. Nguyen DCT, Benameur S, Mignotte M, Lavoie F (2018) Superpixel and multi-atlas based fusion entropic model for the segmentation of X-ray images. Med Image Anal 48:58–74. https://doi.org/10.1016/j.media.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  8. Pinto A (2010) Spectrum of diagnostic errors in radiology. World J Radiol 2:377. https://doi.org/10.4329/wjr.v2.i10.377

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chandra TB, Verma K, Singh BK et al (2021) Coronavirus disease (COVID-19) detection in Chest X-Ray images using majority voting based classifier ensemble. Expert Syst Appl 165:113909. https://doi.org/10.1016/j.eswa.2020.113909

    Article  PubMed  Google Scholar 

  10. Sverzellati N, Milanese G, Milone F et al (2020) Integrated radiologic algorithm for COVID-19 pandemic. J Thorac Imaging 35:228–233. https://doi.org/10.1097/RTI.0000000000000516

    Article  PubMed  Google Scholar 

  11. Zhang K, Liu X, Shen J et al (2020) Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography. Cell 181:1423-1433.e11. https://doi.org/10.1016/j.cell.2020.04.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Welter P, Fischer B, Günther RW, Deserno (né Lehmann) TM (2012) Generic integration of content-based image retrieval in computer-aided diagnosis. Comput Methods Programs Biomed 108:589–599. https://doi.org/10.1016/j.cmpb.2011.08.010

  13. Singh BK, Verma K, Panigrahi L, Thoke AS (2017) Integrating radiologist feedback with computer aided diagnostic systems for breast cancer risk prediction in ultrasonic images: an experimental investigation in machine learning paradigm. Expert Syst Appl 90:209–223. https://doi.org/10.1016/j.eswa.2017.08.020

    Article  Google Scholar 

  14. Zhu L, Gao G, Liu Y et al (2020) Feasibility of integrating computer-aided diagnosis with structured reports of prostate multiparametric MRI. Clin Imaging 60:123–130. https://doi.org/10.1016/j.clinimag.2019.12.010

    Article  PubMed  Google Scholar 

  15. Ai T, Yang Z, Hou H et al (2020) Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology 296:E32–E40. https://doi.org/10.1148/radiol.2020200642

    Article  CAS  PubMed  Google Scholar 

  16. Nair A, Rodrigues JCL, Hare S et al (2020) A British Society of Thoracic Imaging statement: considerations in designing local imaging diagnostic algorithms for the COVID-19 pandemic. Clin Radiol 75:329–334. https://doi.org/10.1016/j.crad.2020.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen N, Zhou M, Dong X et al (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395:507–513. https://doi.org/10.1016/S0140-6736(20)30211-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Anthimopoulos M, Christodoulidis S, Ebner L et al (2016) Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35:1207–1216. https://doi.org/10.1109/TMI.2016.2535865

    Article  PubMed  Google Scholar 

  19. Le NTT, Robinson J, Lewis SJ (2015) Obese patients and radiography literature: what do we know about a big issue? J Med Radiat Sci 62:132–141. https://doi.org/10.1002/jmrs.105

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dr Graham Lloyd-Jones Chest X-ray Anatomy - Soft tissues. https://www.radiologymasterclass.co.uk/tutorials/chest/chest_home_anatomy/chest_anatomy_page10. Accessed 24 Sep 2020

  21. Chandra TB, Verma K (2020) Analysis of quantum noise-reducing filters on chest X-ray images: a review. Measurement 153:107426. https://doi.org/10.1016/j.measurement.2019.107426

    Article  Google Scholar 

  22. Sharma R, Sharma S, Pawar S et al (2015) Radiation dose to patients from X-ray radiographic examinations using computed radiography imaging system. J Med Phys 40:29. https://doi.org/10.4103/0971-6203.152244

    Article  PubMed  PubMed Central  Google Scholar 

  23. Oh Y, Park S, Ye JC (2020) Deep learning COVID-19 features on CXR using limited training data sets. IEEE Trans Med Imaging 0062:1–1. https://doi.org/10.1109/tmi.2020.2993291

    Article  Google Scholar 

  24. Li L, Qin L, Xu Z et al (2020) Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: evaluation of the diagnostic accuracy. Radiology 296:E65–E71. https://doi.org/10.1148/radiol.2020200905

    Article  PubMed  Google Scholar 

  25. Chandra TB, Verma K (2020) Pneumonia detection on chest X-ray using machine learning paradigm. In: Chaudhuri BB, and Nakagawa M, and Khanna P, and Kumar S (eds) Proceedings of Third International Conference on Computer Vision & Image Processing. Springer Singapore, pp 21–33. https://doi.org/10.1007/978-981-32-9088-4_3

  26. Chandra TB, Verma K, Jain D, Netam SS (2020) Localization of the suspected abnormal region in chest radiograph images. In: 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T). IEEE, pp 204–209. https://doi.org/10.1109/ICPC2T48082.2020.9071445

  27. Ke Q, Zhang J, Wei W et al (2019) A neuro-heuristic approach for recognition of lung diseases from X-ray images. Expert Syst Appl 126:218–232. https://doi.org/10.1016/j.eswa.2019.01.060

    Article  Google Scholar 

  28. Jaiswal AK, Tiwari P, Kumar S et al (2019) Identifying pneumonia in chest X-rays: a deep learning approach. Meas J Int Meas Confed 145:511–518. https://doi.org/10.1016/j.measurement.2019.05.076

    Article  Google Scholar 

  29. Li X, Shen L, Luo S (2018) A solitary feature-based lung nodule detection approach for chest X-ray radiographs. IEEE J Biomed Heal Informatics 22:516–524. https://doi.org/10.1109/JBHI.2017.2661805

    Article  Google Scholar 

  30. Rajpurkar P, Irvin J, Zhu K, et al (2017) CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv Prepr arXiv171105225 3–9

  31. Grewal M, Srivastava MM, Kumar P, Varadarajan S (2018) RADnet: tadiologist level accuracy using deep learning for hemorrhage detection in CT scans. Proc - Int Symp Biomed Imaging 2018-April:281–284. https://doi.org/10.1109/ISBI.2018.8363574

  32. Candemir S, Jaeger S, Palaniappan K et al (2014) Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans Med Imaging 33:577–590. https://doi.org/10.1109/TMI.2013.2290491

    Article  PubMed  Google Scholar 

  33. Chandra TB, Verma K, Jain D, Netam SS (2021) Segmented lung boundary correction in chest radiograph using context-aware adaptive scan algorithm. In: Proceedings of ICBEST 2018. Springer, Singapore, pp 263–275. https://doi.org/10.1007/978-981-15-6329-4_23

  34. Travis WD, Brambilla E, Noguchi M et al (2011) International association for the study of lung cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 6:244–285. https://doi.org/10.1097/JTO.0b013e318206a221

    Article  PubMed  PubMed Central  Google Scholar 

  35. Taran S (2010) An examination of the factors contributing to poor communication outside the physician-patient sphere. McGill J Med 13:86–91

    Google Scholar 

  36. Kain Z (2017) Effects of the poor communication in hospitals | The Healthcare Guys. https://www.healthcareguys.com/2017/12/04/effects-of-the-poor-communication-in-hospitals/. Accessed 12 Oct 2020

  37. Sorace J, Aberle DR, Elimam D, et al (2012) Integrating pathology and radiology disciplines: An emerging opportunity? BMC Med 10https://doi.org/10.1186/1741-7015-10-100

  38. Awai K, Murao K, Ozawa A et al (2004) Pulmonary nodules at chest CT: effect of computer-aided diagnosis on radiologists’ detection performance. Radiology 230:347–352. https://doi.org/10.1148/radiol.2302030049

    Article  PubMed  Google Scholar 

  39. Taylor P, Given-Wilson R, Champness J et al (2004) Assessing the impact of CAD on the sensitivity and specificity of film readers. Clin Radiol 59:1099–1105. https://doi.org/10.1016/j.crad.2004.04.017

    Article  CAS  PubMed  Google Scholar 

  40. Shiraishi J, Abe H, Li F et al (2006) Computer-aided diagnosis for the detection and classification of lung cancers on chest radiographs. ROC Analysis of Radiologists’ Performance. Acad Radiol 13:995–1003. https://doi.org/10.1016/j.acra.2006.04.007

    Article  PubMed  Google Scholar 

  41. White CS, Pugatch R, Koonce T et al (2008) Lung nodule CAD software as a second reader. Acad Radiol 15:326–333. https://doi.org/10.1016/j.acra.2007.09.027

    Article  PubMed  Google Scholar 

  42. Nishikawa RM, Schmidt RA, Linver MN et al (2012) Clinically missed cancer: how effectively can radiologists use computer-aided detection? Am J Roentgenol 198:708–716. https://doi.org/10.2214/AJR.11.6423

    Article  Google Scholar 

  43. Kashikura Y, Nakayama R, Hizukuri A et al (2013) Improved differential diagnosis of breast masses on ultrasonographic images with a computer-aided diagnosis scheme for determining histological classifications. Acad Radiol 20:471–477. https://doi.org/10.1016/j.acra.2012.11.007

    Article  PubMed  Google Scholar 

  44. Yanase J, Triantaphyllou E (2019) The seven key challenges for the future of computer-aided diagnosis in medicine. Int J Med Inform 129:413–422. https://doi.org/10.1016/j.ijmedinf.2019.06.017

    Article  PubMed  Google Scholar 

  45. Ambroise C, McLachlan GJ (2002) Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci 99:6562–6566. https://doi.org/10.1073/pnas.102102699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Srinivasan G, Shobha G (2008) Statistical texture analysis. In: Proceedings of world academy of science, Engineering and technology. pp 1264–1269

  47. Gomez W, Pereira WCA, Infantosi AFC (2012) Analysis of co-occurrence texture statistics as a function of gray-level quantization for classifying breast ultrasound. IEEE Trans Med Imaging 31:1889–1899. https://doi.org/10.1109/TMI.2012.2206398

    Article  CAS  PubMed  Google Scholar 

  48. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern SMC 3:610–621. https://doi.org/10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  49. Albregtsen F (2008) Statistical texture measures computed from gray level coocurrence matrices. Image Process Lab Dep informatics, Univ oslo 5https://doi.org/10.5209/ARIS.6586

  50. Santosh KC, Antani S (2018) Automated chest X-ray screening: can lung region symmetry help detect pulmonary abnormalities? IEEE Trans Med Imaging 37:1168–1177. https://doi.org/10.1109/TMI.2017.2775636

    Article  CAS  PubMed  Google Scholar 

  51. Batool FE, Attique M, Sharif M et al (2020) Offline signature verification system: a novel technique of fusion of GLCM and geometric features using SVM. Multimed Tools Appl. https://doi.org/10.1007/s11042-020-08851-4

    Article  Google Scholar 

  52. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  53. Vapnik V (1998) Statistical learning theory. 1998. Wiley, New York

  54. Pantazi XE, Moshou D, Bochtis D (2020) Artificial intelligence in agriculture. In: Intelligent Data Mining and Fusion Systems in Agriculture. Elsevier, pp 17–101

  55. Khatami A, Khosravi A, Nguyen T et al (2017) Medical image analysis using wavelet transform and deep belief networks. Expert Syst Appl 86:190–198. https://doi.org/10.1016/j.eswa.2017.05.073

    Article  Google Scholar 

  56. Han J, Kamber M, Pei J (2012) Data mining: concepts and techniques

  57. Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian optimization of machine learning algorithms. Curran Associates, Inc.

  58. Triantaphyllou E (2000) Multi-criteria decision making methods. Springer, Boston, MA, pp 5–21

    Google Scholar 

  59. Šaparauskas J, Zavadskas EK, Turskis Z (2011) Selection of facade’s alternatives of commercial and public buildings based on multiple criteria. Int J Strateg Prop Manag 15:189–203. https://doi.org/10.3846/1648715X.2011.586532

    Article  Google Scholar 

  60. Shaffer JP (1986) Modified sequentially rejective multiple test procedures. J Am Stat Assoc 81:826–831

    Article  Google Scholar 

  61. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  62. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Satyabhuwan Singh Netam and Dr. Deepak Jain, Department of Radiodiagnosis, Pt. Jawaharlal Nehru Memorial Medical College, Raipur (C.G.), India, and Dr. Sujit Kumar Samanta, Department of Mathematics, National Institute of Technology Raipur, Chhattisgarh, India for their valuable guidance and suggestions.

This study uses the chest X-ray images and the patient histopathological information collected from Pt. Jawaharlal Nehru Memorial Medical College, Raipur (C.G.), India. The necessary ethical permissions (Letter Dispatch No. 13767, Dated: 09/12/2020 and Ethical Approval No.: NITRR/IEC/2019/08, Dated: 12/09/2019) have been obtained prior to the data collection from the competent authorities of both organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tej Bahadur Chandra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 15

Table 15 The detailed description of the 22 GLCM features [47,48,49]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, T.B., Singh, B.K. & Jain, D. Integrating patient symptoms, clinical readings, and radiologist feedback with computer-aided diagnosis system for detection of infectious pulmonary disease: a feasibility study. Med Biol Eng Comput 60, 2549–2565 (2022). https://doi.org/10.1007/s11517-022-02611-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02611-2

Keywords