Skip to main content

Advertisement

Log in

EEG analysis and classification based on cardinal spline empirical mode decomposition and synchrony features

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract 

Dementia is a major cause of disability and dependency among older adults. Diagnosis is most effective at an early stage of the disease, as patients can start early treatment to delay progressive cognitive decline. While other diagnostic methods for dementia are available, electroencephalography (EEG) is noninvasive, more accessible, and less complicated than other biomarker measurements. Moreover, it may be orders of magnitude less expensive, thereby offering the possibility of low-cost mass screening. This paper presents a novel digital signal processing method called cardinal spline empirical mode decomposition (CS-EMD) for EEG processing. This new method uses a different signal envelope interpolation algorithm to separate EEG signals into constituent components, called intrinsic mode functions (IMFs), with better signal decomposition properties than classical empirical mode decomposition (EMD). The IMFs obtained from the new method are then used to compute longitudinal and transversal synchrony measures, which are explored as features for healthy and dementia classification using a support vector machine (SVM). The performance of the proposed method is studied on a publicly available EEG dataset. The results show that using multiple synchrony measures of both longitudinal and transversal EEG channels on five IMFs produces the best classification result of 90% accuracy, 96.67% specificity, 83.33% sensitivity, and 96.15% precision, outperforming the classical EMD method and various other approaches. This new, data-driven CS-EMD method shows good potential as a dementia screening tool. CS-EMD may also be applied in processing other nonlinear and nonstationary biosignals.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alzheimer’s Disease International (2015) The global impact of dementia: an analysis of prevalence, incidence, cost and trends. In: World Alzheimer report. https://www.alzint.org/resource/world-alzheimer-report-2015/

  2. Waldemar G, Phungh KTT, Burns A, Georges J, Hansen FR, Iliffe S, Marking C, Olde-Rikkert M, Selmes J, Stoppe G, Sartorius N (2007) Access to diagnostic evaluation and treatment for dementia in Europe. Int J Geriatr Psychiatry 22(1):47–54. https://doi.org/10.1002/gps.1652

    Article  PubMed  Google Scholar 

  3. Prince MJ, Fan Wu, Guo Y, Gutierrez LM, Robledo MO, Sullivan R, Yusuf S (2015) The burden of disease in older people and implications for health policy and practice. Lancet 385(9967):549–562. https://doi.org/10.1016/S0140-6736(14)61347-7

    Article  PubMed  Google Scholar 

  4. Bruandet A, Richard F, Bombois S, Maurage CA, Deramecourt V, Lebert F et al (2009) Alzheimer disease with cerebrovascular disease and vascular dementia: clinical features and course compared with Alzheimer disease. J Neurol Neurosurg Psychiatry 80(2):133–139. https://doi.org/10.1136/jnnp.2007.137851

    Article  CAS  PubMed  Google Scholar 

  5. Cedazo-Minguez A, Winblad B (2010) Biomarkers for Alzheimer’s disease and other forms of dementia: clinical needs, limitations and future aspects. Exp Gerontol 45(1):5–14. https://doi.org/10.1016/j.exger.2009.09.008

    Article  CAS  PubMed  Google Scholar 

  6. Al-Qazzaz NK, Bin SH, Ali MD, Ahmad SA, Kalaivani Chellappan MD, Islam S, Escudero J (2014) Role of EEG as biomarker in the early detection and classification of dementia. Sci World J 2014:906038. https://doi.org/10.1155/2014/906038

    Article  Google Scholar 

  7. Menon V, Crottaz-Herbette S (2005) Combined EEG and fMRI studies of human brain function. Int Rev Neurobiol 66:291–321. https://doi.org/10.1016/s0074-7742(05)66010-2

    Article  CAS  PubMed  Google Scholar 

  8. Nunez P, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG. Oxford University Press

    Book  Google Scholar 

  9. Dauwels J, Vialatte F, Musha T, Cichocki A (2010) A comparative study of synchrony measures for the early diagnosis of Alzheimer’s disease, based on EEG. Neuroimage 49(1):668–693. https://doi.org/10.1016/j.neuroimage.2009.06.056

    Article  CAS  PubMed  Google Scholar 

  10. Trambaiolli LR, Lorena AC, Fraga FJ, Kanda PAM, Renato Anghinah R, Nitrini, (2011) Improving Alzheimer’s disease diagnosis with machine learning techniques. Clin EEG Neurosci 42(3):160–165. https://doi.org/10.1177/155005941104200304

    Article  PubMed  Google Scholar 

  11. Podgorelec V (2012) Analyzing EEG signals with machine learning for diagnosing Alzheimer’s disease. Elektronika Ir Elektrotechnika 18(8):61–64. https://doi.org/10.5755/j01.eee.18.8.2627

    Article  Google Scholar 

  12. Fiscon G et al (2014) Alzheimer’s disease patients classification through EEG signals processing. IEEE Symposium on Computational Intelligence and Data Mining (CIDM) 2014:105–112. https://doi.org/10.1109/CIDM.2014.7008655

    Article  Google Scholar 

  13. Al-Nuaimi AH, Jammeh E, Sun L, Ifeachor E (2015) Tsallis entropy as a biomarker for detection of Alzheimer’s disease. Annu Int Conf IEEE Eng Med Biol Soc 2015:4166–4169. https://doi.org/10.1109/embc.2015.7319312

    Article  PubMed  Google Scholar 

  14. Claudio B, Triggiani Antonio I et al (2016) Classification of single normal and Alzheimer’s disease individuals from cortical sources of resting state EEG rhythms. Front Neurosci 10:47. https://doi.org/10.3389/fnins.2016.00047

    Article  Google Scholar 

  15. Triggiani Antonio I, Vitoantonio B, Antonio B et al (2017) Classification of healthy subjects and Alzheimer’s disease patients with dementia from cortical sources of resting state EEG rhythms: a study using artificial neural networks. Front Neurosci 10:604. https://doi.org/10.3389/fnins.2016.00604

    Article  PubMed  PubMed Central  Google Scholar 

  16. Blinowska KJ, Rakowski F, Kaminski M, De Vico FF, Del Percio C, Lizio R, Babiloni C (2017) Functional and effective brain connectivity for discrimination between Alzheimer’s patients and healthy individuals: a study on resting state EEG rhythms. Clin Neurophysiol 128(4):667–680. https://doi.org/10.1016/j.clinph.2016.10.002

    Article  PubMed  Google Scholar 

  17. Al-Nuaimi AH, Blūma M, Al-Juboori SS, Eke CS, Jammeh E, Sun L, Ifeachor E (2021) Robust EEG based biomarkers to detect Alzheimer’s disease. Brain Sci 11(8):1026. https://doi.org/10.3390/brainsci11081026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bajaj V, Pachori RB (2012) Classification of seizure and non-seizure EEG signals using empirical mode decomposition. IEEE Trans Inf Technol Biomed 16(6):1135–1142. https://doi.org/10.1109/TITB.2011.2181403

    Article  PubMed  Google Scholar 

  19. Huang NE, Shen Z, Long SR et al (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences 454(1971):903–995. https://doi.org/10.1098/rspa.1998.0193

    Article  Google Scholar 

  20. Cui D, Wang J, Bian Z, Li Q, Wang L, Li X (2015) Analysis of entropies based on empirical mode decomposition in amnesic mild cognitive impairment of diabetes mellitus. Journal of Innovative Optical Health 8(5):1550010. https://doi.org/10.1142/S1793545815500108

    Article  Google Scholar 

  21. Lazar P, Jayapathy R, Jordina Torrents-Barrena M, Lindad M, Beena Mol J, Mohanalin DP (2018) Improving the performance of empirical mode decomposition via Tsallis entropy: application to Alzheimer EEG analysis. Biomed Mater Eng 29(5):551–566. https://doi.org/10.3233/bme-181008

    Article  PubMed  Google Scholar 

  22. Harati A, Lopez S, Obeid I, Jacobson M, Tobochnik S, Picone J (2014) THE TUH EEG CORPUS: a big data resource for automated EEG interpretation. IEEE Signal Processing in Medicine and Biology Symposium (SPMB) 2014:1–5. https://doi.org/10.1109/SPMB.2014.7002953

    Article  Google Scholar 

  23. The Neural Engineering Data Consortium (NEDC), TUH EEG Corpus 2017. Available: https://www.isip.piconepress.com/projects/tuh_eeg/html/overview.shtml

  24. Sean Ferrell, Vineetha Mathew, Matthew Refford, Vincent Tchiong, Tameem Ahsan, Iyad Obeid, Joseph Picone (2020) The Temple University Hospital EEG Corpus: electrode location and channel labels. In: Neural engineering data consortium report. Available: https://www.isip.piconepress.com/publications/reports/2020/tuh_eeg/electrodes/

  25. Ho R, Hung K (2020) A comparative investigation of mode mixing in EEG decomposition using EMD, EEMD and M-EMD. IEEE Symposium on Computer Applications and Industrial Electronics (ISCAIE) 2020:203–210. https://doi.org/10.1109/ISCAIE47305.2020.9108817

    Article  Google Scholar 

  26. Xua G, Yangb Z, Wang S (2016) Study on mode mixing problem of EMD. Joint International Information Technology, Mechanical and Electronic Engineering Conference 2016:389–394. https://doi.org/10.2991/jimec-16.2016.69

    Article  Google Scholar 

  27. Zhu W, Zhao H, Xiang D, Chen X (2013) A flattest constrained envelope approach for empirical mode decomposition. PLoS ONE 8(4):e61739. https://doi.org/10.1371/journal.pone.0061739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhaohua Wu, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1(1):1–41. https://doi.org/10.1142/S1793536909000047

    Article  Google Scholar 

  29. Deering R, Kaiser JF (2005) The use of masking signal to improve empirical mode decomposition. Proceedings of IEEE International Conference on Acoustics, Speech Signal Processing 2005:485–488. https://doi.org/10.1109/ICASSP.2005.1416051

    Article  Google Scholar 

  30. Chen Q, Huang N, Riemenschneider S et al (2006) A B-spline approach for empirical mode decompositions. Adv Comput Math 24:171–195. https://doi.org/10.1007/s10444-004-7614-3

    Article  Google Scholar 

  31. Xuejun Z, Yan H, Dongsheng W (2020) Improved EMD based on piecewise cubic Hermite interpolation and mirror extension. Chin J Electron 29(5):899–905. https://doi.org/10.1049/cje.2020.08.005

    Article  Google Scholar 

  32. Zhengguang Xu, Huang B, Li K (2010) An alternative envelope approach for empirical mode decomposition. Digit Signal Process 20(1):77–84. https://doi.org/10.1016/j.dsp.2009.06.009

    Article  Google Scholar 

  33. Bejancu A (2000) A new approach to semi-cardinal spline interpolation. East J Approx 6(4):447–463

    Google Scholar 

  34. Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE (2001) Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E Stat Nonlin Soft Matter Phys 64:061907. https://doi.org/10.1103/physreve.64.061907

    Article  CAS  PubMed  Google Scholar 

  35. Vecchio F, Babiloni C, Lizio R, De Vico FF, Blinowska K, Verrienti G, Frisoni G, Rossini PM (2013) Resting state cortical EEG rhythms in Alzheimer’s disease: toward EEG markers for clinical applications: a review. Suppl Clin Neurophysiol 62:223–236. https://doi.org/10.1016/b978-0-7020-5307-8.00015-6

    Article  PubMed  Google Scholar 

  36. Babiloni C et al (2015) Brain neural synchronization and functional coupling in Alzheimer’s disease as revealed by resting state EEG rhythms. Int J Psychophysiol 103:88–102. https://doi.org/10.1016/j.ijpsycho.2015.02.008

    Article  PubMed  Google Scholar 

  37. Vecchio F, Babiloni C (2011) Direction of information flow in Alzheimer’s disease and MCI patients. Int J Alzheimers Dis 2011:214580. 10.4061%2F2011%2F214580

  38. Gallego-Jutglà E, Elgendi M, Vialatte F, Solé-Casals J, Cichocki A, Latchoumane C, Jeong J, Dauwels J (2012) Diagnosis of Alzheimer’s disease from EEG by means of synchrony measures in optimized frequency bands. Annu Int Conf IEEE Eng Med Biol Soc 2012:4266–4270. https://doi.org/10.1109/embc.2012.6346909

    Article  PubMed  Google Scholar 

  39. Seraj E (2018) Cerebral synchrony assessment: a general review on cerebral signals’ synchronization estimation concepts and methods. arXiv preprint arXiv:1612.04295. Available: https://doi.org/10.48550/arXiv.1612.04295

  40. Faes L, Erla S, Nollo G (2012) Measuring connectivity in linear multivariate processes: definitions, interpretation, and practical analysis. Comput Math Methods Med 2012:140513. https://doi.org/10.1155/2012/140513

    Article  PubMed  PubMed Central  Google Scholar 

  41. Locatelli T, Cursi M, Liberati D, Franceschi M, Comi G (1998) EEG coherence in Alzheimer’s disease. Electroencephalogr Clin Neurophysiol 106(3):229–237. https://doi.org/10.1016/S0013-4694(97)00129-6

    Article  CAS  PubMed  Google Scholar 

  42. Brunovsky M, Matousek M, Edman A, Cervena K, Krajca V (2003) Objective assessment of the degree of dementia by means of EEG. Neuropsychobiology 48(1):19–26. https://doi.org/10.1159/000071824

    Article  PubMed  Google Scholar 

  43. Combrisson E, Jerbi K (2015) Exceeding chance level by chance: the caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy. J Neurosci Methods 250:126–136. https://doi.org/10.1016/j.jneumeth.2015.01.010

    Article  PubMed  Google Scholar 

  44. Beleites C, Baumgartner R, Bowman C, Somorjai RL, Steiner G, Salzer R, Sowa MG (2005) Variance reduction in estimating classification error using sparse datasets. Chemom Intell Lab Syst 79:91–100. https://doi.org/10.1016/J.CHEMOLAB.2005.04.008

    Article  CAS  Google Scholar 

  45. Wainer J, Cawley GC (2017) Empirical evaluation of resampling procedures for optimising SVM hyperparameters. J Mach Learn Res 18(1):475−509. https://dl.acm.org/doi/abs/https://doi.org/10.5555/3122009.3122024

  46. Janez Demšar (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30. https://dl.acm.org/doi/https://doi.org/10.5555/1248547.1248548

  47. Lehmann C, Koenig T, Jelic V, Prichep L, John RE, Wahlund LO, Dodge Y, Dierks T (2007) Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG). J Neurosci Methods 161(2):342–350. https://doi.org/10.1016/j.jneumeth.2006.10.023

    Article  PubMed  Google Scholar 

  48. Riaz F, Hassan A, Rehman S, Niazi IK, Dremstrup K (2016) EMD-based temporal and spectral features for the classification of EEG signals using supervised learning. IEEE Trans Neural Syst Rehabil Eng 24(1):28–35. https://doi.org/10.1109/TNSRE.2015.2441835

    Article  PubMed  Google Scholar 

  49. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422. https://doi.org/10.1023/A:1012487302797

    Article  Google Scholar 

  50. Byun H, Lee SW (2003) A survey on pattern recognition applications of support vector machines. Int J Pattern Recognit Artif Intell 17(3):459–486. https://doi.org/10.1142/S0218001403002460

    Article  Google Scholar 

  51. Rilling G, Flandrin P, Gonalves P (2003) On empirical mode decomposition and its algorithms. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03. Codes Available: https://perso.ens-lyon.fr/patrick.flandrin/emd.html

  52. Magrin-Chagnolleau I (2002) MATLAB code for EMD. Codes Available: http://www.mit.edu/~gari/CODE/HRV/emd.m

  53. Khan M A, Yoshio Ohno (2007) An automated video data compression algorithm by cardinal spline fitting. NICOGRAPH International Conference.

  54. Faes L, Erla S, Porta A, Nollo G (2013) A framework for assessing frequency domain causality in physiological time series with instantaneous effects. Philosophical Transactions A 371:20110618. https://doi.org/10.1098/rsta.2011.0618. Codes Available: http://www.lucafaes.net/emvar.html

  55. BioSig for MATLAB toolbox, Codes Available: http://biosig.sourceforge.net/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Ho.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, R., Hung, K. EEG analysis and classification based on cardinal spline empirical mode decomposition and synchrony features. Med Biol Eng Comput 60, 2359–2372 (2022). https://doi.org/10.1007/s11517-022-02615-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02615-y

Keywords

Navigation