Skip to main content

Advertisement

Log in

A comparative study of classification methods for designing a pictorial P300-based authentication system

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The response of the P300-based speller is associated with factors like matrix size, inter-stimulus interval, and flashing period. This study proposes the comparison of the novel 2 × 2 image-based speller with the traditional 6 × 6 character-based speller to analyze the effects of the stimulus on the accuracy and information transfer rates. To determine the best classification methodology for the approach suggested, a comparative study was performed using linear and quadratic discrimination analysis, K-nearest neighbor, and support vector machine. In the proposed paradigm, four pictures (objects, special symbols, geometrical shapes, and colors) were randomly placed at four corners of the monitor. Subjects were asked to focus on the target image while ignoring all other images. The proposed method outperformed the traditional method, with an average accuracy of 96.99 ± 1.64% and 86.74 ± 5.19%, respectively, and information transfer rates of 33.82 ± 0.57 bits/min and 23.35 ± 0.79 bits/min, respectively. Results show that a modified speller can play a significant role in optimizing brain-computer interface-driven applications. A repeated measure ANOVA test was performed, which concluded that the improved results are obtained using QDA classifiers in terms of mean accuracy, speed, and error rates.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BCI:

Brain-computer interface

SSVEP:

Steady-state visual evoked potential

LDA:

Linear discriminant analysis

FRR :

False rejection rate

FAR:

False acceptance rate

ERP:

Event-related potential

QDA:

Quadratic discriminant analysis

ITR:

Information transfer rate

References

  1. O’Gorman L (2003) Comparing passwords, tokens, and biometrics for user authentication. Proc IEEE 91:2021–2040

    Article  Google Scholar 

  2. Shanmugapriya D, Padmavathi G (2009) A survey of biometric keystroke dynamics: approaches, security and challenges. arXiv Prepr arXiv09100817

  3. Saifan R, Salem A, Zaidan D, Swidan A (2016) A Survey of behavioral authentication using keystroke dynamics: Touch screens and mobile devices. J Soc Sci 5:29–41

    Google Scholar 

  4. Wanjau SK, Wambugu GM, Kamau GN (2021) SSH-brute force attack detection model based on deep learning

  5. Ghogare SD, Jadhav SP, Chadha AR, Patil HC (2012) Location based authentication: a new approach towards providing security. Int J Sci Res Publ 2:1–5

    Google Scholar 

  6. Kaliraman B, Singh P, Duhan M (2021) Use of EEG as a unique human biometric trait for authentication of an individual. In: Advances in Communication and Computational Technology. Springer, pp 277–286

  7. Atum Y, Pacheco M, Acevedo R et al (2019) A comparison of subject-dependent and subject-independent channel selection strategies for single-trial P300 brain computer interfaces. Med Biol Eng Comput. https://doi.org/10.1007/s11517-019-02065-z

    Article  PubMed  Google Scholar 

  8. Xu M, Xiao X, Wang Y et al (2018) A brain–computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli. IEEE Trans Biomed Eng 65:1166–1175

    Article  PubMed  Google Scholar 

  9. Ahirwal MK, Londhe ND (2012) Power spectrum analysis of EEG signals for estimating visual attention. Int J Comput Appl 42:22–25

    Google Scholar 

  10. Wolpaw JR, Birbaumer N, McFarland DJ et al (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113:767–791

    Article  PubMed  Google Scholar 

  11. Scherer R, Muller GR, Neuper C et al (2004) An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate. IEEE Trans Biomed Eng 51:979–984

    Article  PubMed  Google Scholar 

  12. Hosni SM, Shedeed HA, Mabrouk MS, Tolba MF (2019) EEG-EOG based virtual keyboard: toward hybrid brain computer interface. Neuroinformatics

  13. Zheng M, Yang B, Xie Y (2020) EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system. Med Biol Eng Comput. https://doi.org/10.1007/s11517-020-02176-y

    Article  PubMed  Google Scholar 

  14. Vaughan TM, Heetderks WJ, Trejo LJ, et al (2003) Brain-computer interface technology: a review of the Second International Meeting.

  15. Kong W, Guo S, Long Y, et al (2018) Weighted extreme learning machine for P300 detection with application to brain computer interface. J Ambient Intell Humaniz Comput 1–11

  16. Zúquete A, Quintela B, da Silva Cunha JP (2010) Biometric authentication using brain responses to visual stimuli. In: Biosignals. pp 103–112

  17. Kaiser J, Walker F, Leiberg S, Lutzenberger W (2005) Cortical oscillatory activity during spatial echoic memory. Eur J Neurosci 21:587–590

    Article  PubMed  Google Scholar 

  18. Birbaumer N (2006) Breaking the silence: brain–computer interfaces (BCI) for communication and motor control. Psychophysiology 43:517–532

    Article  PubMed  Google Scholar 

  19. Shukla PK, Chaurasiya RK, Verma S (2021) Performance improvement of P300-based home appliances control classification using convolution neural network. Biomed Signal Process Control. https://doi.org/10.1016/j.bspc.2020.102220

    Article  Google Scholar 

  20. Mary Judith A, Baghavathi Priya S Multiset task related component analysis (M-TRCA) for SSVEP frequency recognition in BCI. J Ambient Intell Humaniz Comput 1–10

  21. Mohanchandra K, Saha S, Lingaraju GM (2015) EEG based brain computer interface for speech communication: principles and applications. In: Brain-Computer Interfaces. Springer, pp 273–293

  22. Cecotti H (2011) Spelling with non-invasive brain–computer interfaces–current and future trends. J Physiol 105:106–114

    Google Scholar 

  23. Rak RJ, Kołodziej M, Majkowski A (2012) Brain-computer interface as measurement and control system the review paper. Metrol Meas Syst 19:427–444

    Article  Google Scholar 

  24. Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces a review. Sensors 12:1211–1279

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ramadan RA, Vasilakos AV (2017) Brain computer interface: control signals review. Neurocomputing 223:26–44

    Article  Google Scholar 

  26. Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70:510–523

    Article  CAS  PubMed  Google Scholar 

  27. Cipresso P, Carelli L, Solca F et al (2012) The use of P300-based BCIs in amyotrophic lateral sclerosis: from augmentative and alternative communication to cognitive assessment. Brain Behav 2:479–498

    Article  PubMed  PubMed Central  Google Scholar 

  28. Allison BZ, Pineda JA (2003) ERPs evoked by different matrix sizes: implications for a brain computer interface (BCI) system. IEEE Trans neural Syst Rehabil Eng 11:110–113

    Article  PubMed  Google Scholar 

  29. Salvaris M, Sepulveda F (2009) Visual modifications on the P300 speller BCI paradigm. J Neural Eng 6:46011

    Article  CAS  Google Scholar 

  30. Takano K, Komatsu T, Hata N et al (2009) Visual stimuli for the P300 brain–computer interface: a comparison of white/gray and green/blue flicker matrices. Clin Neurophysiol 120:1562–1566

    Article  PubMed  Google Scholar 

  31. Mu Z, Hu J, Min J (2016) EEG-based person authentication using a fuzzy entropy-related approach with two electrodes. Entropy 18:432

    Article  Google Scholar 

  32. Sellers EW, Donchin E (2006) A P300-based brain–computer interface: initial tests by ALS patients. Clin Neurophysiol 117:538–548

    Article  PubMed  Google Scholar 

  33. Piccione F, Giorgi F, Tonin P et al (2006) P300-based brain computer interface: reliability and performance in healthy and paralysed participants. Clin Neurophysiol 117:531–537

    Article  CAS  PubMed  Google Scholar 

  34. Donchin E, Spencer KM, Wijesinghe R (2000) The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Trans Rehabil Eng 8:174–179

    Article  CAS  PubMed  Google Scholar 

  35. Rakotomamonjy A, Guigue V (2008) BCI competition III: dataset II-ensemble of SVMs for BCI P300 speller. IEEE Trans Biomed Eng 55:1147–1154

    Article  PubMed  Google Scholar 

  36. Ajufor N, Amalraj A, Diaz R et al (2008) Refinement of a mouse movement biometric system. Pace Univ, Proc CSIS Res Day

    Google Scholar 

  37. Everitt RAJ, McOwan PW (2003) Java-based internet biometric authentication system. IEEE Trans Pattern Anal Mach Intell 25:1166–1172

    Article  Google Scholar 

  38. Farquhar J, Hill NJ (2013) Interactions between pre-processing and classification methods for event-related-potential classification: best-practice guidelines for brain-computer interfacing. Neuroinformatics. https://doi.org/10.1007/s12021-012-9171-0

    Article  PubMed  Google Scholar 

  39. Zhou Z, Yin E, Liu Y et al (2014) A novel task-oriented optimal design for P300-based brain–computer interfaces. J Neural Eng 11:56003

    Article  Google Scholar 

  40. Xu M, Han J, Wang Y et al (2020) Implementing over 100 command codes for a high-speed hybrid brain-computer interface using concurrent P300 and SSVEP features. IEEE Trans Biomed Eng 67:3073–3082

    Article  PubMed  Google Scholar 

  41. Ille N, Berg P, Scherg M (2002) Artifact correction of the ongoing EEG using spatial filters based on artifact and brain signal topographies. Clin Neurophysiol 19:113–124. https://doi.org/10.1097/00004691-200203000-00002

    Article  Google Scholar 

  42. Townsend G, LaPallo BK, Boulay CB et al (2010) A novel P300-based brain–computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin Neurophysiol 121:1109–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Picton TW (1992) The P300 wave of the human event-related potential. J Clin Neurophysiol 9:456–479

    Article  CAS  PubMed  Google Scholar 

  44. Kaongoen N, Yu M, Jo S (2017) Two-factor authentication system using P300 response to a sequence of human photographs. IEEE Trans Syst Man, Cybern Syst

  45. Vanek J, Moucek R (2018) Deep learning techniques for classification of P300 Component. In: HEALTHINF. pp 446–453

  46. Krusienski DJ, Sellers EW, Cabestaing F et al (2006) A comparison of classification techniques for the P300 Speller. J Neural Eng 3:299

    Article  PubMed  Google Scholar 

  47. Panicker RC, Puthusserypady S, Sun Y (2010) Adaptation in P300 brain–computer interfaces: a two-classifier cotraining approach. IEEE Trans Biomed Eng 57:2927–2935

    Article  PubMed  Google Scholar 

  48. Thulasidas M, Guan C, Wu J (2006) Robust classification of EEG signal for brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 14:24–29

    Article  PubMed  Google Scholar 

  49. Kundu S, Ari S (2018) P300 detection with brain–computer interface application using PCA and ensemble of weighted SVMs. IETE J Res 64:406–414

    Article  Google Scholar 

  50. Krusienski DJ, Sellers EW, McFarland DJ et al (2008) Toward enhanced P300 speller performance. J Neurosci Methods 167:15–21

    Article  CAS  PubMed  Google Scholar 

  51. Alsberg BK, Goodacre R, Rowland JJ, Kell DB (1997) Classification of pyrolysis mass spectra by fuzzy multivariate rule induction-comparison with regression, K-nearest neighbour, neural and decision-tree methods. Anal Chim Acta 348:389–407

    Article  CAS  Google Scholar 

  52. Pierce JR (2012) An introduction to information theory: symbols, signals and noise. Courier Corporation

  53. Sundaram M, Mani A (2016) Face recognition: demystification of multifarious aspect in evaluation metrics. In: Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods

  54. Sellers EW, Krusienski DJ, McFarland DJ et al (2006) A P300 event-related potential brain–computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Biol Psychol 73:242–252

    Article  PubMed  Google Scholar 

  55. Duncan-Johnson CC, Donchin E (1977) On quantifying surprise: the variation of event-related potentials with subjective probability. Psychophysiology 14:456–467

    Article  CAS  PubMed  Google Scholar 

  56. Meinicke P, Kaper M, Hoppe F, et al Improving transfer rates in brain computer interface: a case study. 2002. In: Neural Information Processing Systems. pp 1107–1114

  57. Hoffmann U, Vesin J-M, Ebrahimi T, Diserens K (2008) An efficient P300-based brain–computer interface for disabled subjects. J Neurosci Methods 167:115–125

    Article  PubMed  Google Scholar 

  58. Serby H, Yom-Tov E, Inbar GF (2005) An improved P300-based brain-computer interface. IEEE Trans neural Syst Rehabil Eng 13:89–98

    Article  PubMed  Google Scholar 

  59. Ludwig SA, Kong J (2017) Investigation of different classifiers and channel configurations of a mobile P300-based brain–computer interface. Med Biol Eng Comput 55:2143–2154

    Article  PubMed  Google Scholar 

  60. Li F, Li X, Wang F et al (2020) A novel P300 classification algorithm based on a principal component analysis-convolutional neural network. Appl Sci 10:1546

    Article  CAS  Google Scholar 

  61. Salimi-Khorshidi G, Nasrabadi AM, Golpayegani MH (2008) Fusion of classic P300 detection methods’ inferences in a framework of fuzzy labels. Artif Intell Med 44:247–259

    Article  PubMed  Google Scholar 

  62. Oweis RJ, Hamdi N, Ghazali A, Lwissy K (2013) A comparison study on machine learning algorithms utilized in P300-based BCI. J Heal Med Informat 4:2

    Google Scholar 

  63. Mirghasemi H, Fazel-Rezai R, Shamsollahi MB (2006) Analysis of P300 classifiers in brain computer interface speller. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp 6205–6208

Download references

Acknowledgements

The authors thank the participants for their active participation in this experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Rathi.

Ethics declarations

Ethics approval and consent

Experiments on human subjects were performed with the prior consent of the Institute’s ethics committee.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathi, N., Singla, R. & Tiwari, S. A comparative study of classification methods for designing a pictorial P300-based authentication system. Med Biol Eng Comput 60, 2899–2916 (2022). https://doi.org/10.1007/s11517-022-02626-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02626-9

Keywords

Navigation