Skip to main content
Log in

Anterior pelvic plane estimation for total hip arthroplasty using a joint ultrasound and statistical shape model based approach

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Orienting properly the prosthetic cup in total hip arthroplasty is key to ensure the postoperative stability. Several navigation solutions have been developed to assist surgeons in orienting the cup regarding the anterior pelvic plane (APP), defined by both anterior superior iliac spines (ASIS) and the pubic symphysis. However acquiring the APP when the patient is ready for surgery, i.e., mainly in lateral decubitus, is difficult due to the contralateral ASIS being against the operating table. We propose a method to determine the APP from both (1) alternative anatomical landmarks which are easy to acquire with a navigated ultrasound probe and (2) a Statistical Shape Model (SSM) of the pelvis. After creating a pelvic SSM from 40 data, a SSM-based morphometric analysis has been carried out to identify the best anatomical landmarks allowing the easy determination of the APP. The proposed method has then been assessed with both in silico and in vivo experiments on respectively forty synthetic data, and five healthy volunteers. The in silico experiment shows the feasibility to determine the APP with an average error of 4.7 by only acquiring the iliac crest, the anterior superior iliac spine, the anterior inferior iliac spine, and the pubic symphysis. The average in vivo error using the ultrasound modality was 7.3 with an estimated impact on both the cup anteversion and inclination of 4.0 and 1.7 respectively. The proposed method shows promising results that could allow the determination of the APP in lateral decubitus with a clinically acceptable impact on the computation of the cup orientation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. OECD (2019) Health at a Glance 2019: OECD Indicators. OECD Publishing, pp 198–199

  2. Seagrave KG, Troelsen A, Malchau H, Husted H, Gromov K (2017) Acetabular cup position and risk of dislocation in primary total hip arthroplasty. Acta Orthop 88:10–17

    Article  Google Scholar 

  3. Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR (1978) Dislocations after total hip-replacement arthroplasties. J Bone & Joint Surg 60(2):217–220

    Article  Google Scholar 

  4. William S M, Yun HH, Hayden B, Kowal JH, Murphy SB (2018) The safe zone range for cup anteversion is narrower than for inclination in THA. Clin Orthop Relat Res 476(2):325–335

    Article  Google Scholar 

  5. Dorr LD, Callaghan JJ (2019) Death of the lewinnek “Safe zone”. J Arthroplast 34(1):1–2

    Article  Google Scholar 

  6. Dardenne G, Dusseau S, Hamitouche C, Lefèvre C, Stindel E (2009) Toward a Dynamic Approach of THA Planning Based on Ultrasound. Clin Orthop Relat Res 467(4):901–908

    Article  Google Scholar 

  7. Pierrepont J, Hawdon G, Miles BP, O’Connor B, Baré J, Walter LR, Marel E, Solomon M, McMahon S, Shimmin AJ (2017) Variation in functional pelvic tilt in patients undergoing total hip arthroplasty. Bone Joint J 99-B(2):184–191

    Article  Google Scholar 

  8. Marchadour W, Dardenne G, Guezou-Philippe A, Lefévre C., Stindel E (2020) Patient-Specific Safe zone based on daily positions and range of motion. In EPiC Series in Health Sci 4:188–192

    Article  Google Scholar 

  9. Chechik O, Khashan M, Lador R, Salai M, Amar E (2013) Surgical approach and prosthesis fixation in hip arthroplasty world wide. Arch Orthop Trauma Surg 133:1595–1600

    Article  Google Scholar 

  10. Meermans G, Van Doorn WJ, Koenraadt K, Kats J (2014) The use of the transverse acetabular ligament for determining the orientation of the components in total hip replacement. Bone Joint J 96-B (3):312–318

    Article  Google Scholar 

  11. Ha Y-C, Yoo JJ, Lee Y-K, Kim JY, Koo K-H (2012) Acetabular component positioning using anatomic landmarks of the acetabulum. Clin Orthop Relat Res 470(12):3515–3523

    Article  Google Scholar 

  12. Davis ET, Schubert M, Wegner M, Martin H (2015) A new method of registration in navigated hip arthroplasty without the need to register the anterior pelvic plane. J Arthroplasty 30(1):55–60

    Article  Google Scholar 

  13. Haimerl M, Schubert M, Wegner M, Kling S (2012) Anatomical relationships of human pelvises and their application to registration techniques. Comput Aided Surg 17(5):232–239

    Article  Google Scholar 

  14. Vigdorchik JM, Sculco PK, Inglis AE, Schwarzkopf R, Muir JM (2021) Evaluating alternate registration planes for imageless, computer-assisted navigation during total hip arthroplasty. J Arthroplasty 36(10):3527–3533

    Article  Google Scholar 

  15. Fieten L, Dupraz I, Reising K, Helwig P, Heger S, Blömer W, Radermacher K (2012) Ultrasound-based registration of the pelvic coordinate system in the lateral position using symmetry for total hip replacement. Biomed Tech 57(4):239–248

    Article  Google Scholar 

  16. Jain S, Aderinto J, Bobak P (2013) The role of the transverse acetabular ligament in total hip arthroplasty. Acta Orthop Belg 79(2):135–140

    Google Scholar 

  17. Davenport D, Kavarthapu V (2016) Computer navigation of the acetabular component in total hip arthroplasty: A narrative review. EFORT Open Rev 1(7):279–285

    Article  Google Scholar 

  18. Snijders T, Van Gaalen SM, de Gast A (2017) Precision and accuracy of imageless navigation versus freehand implantation of total hip arthroplasty: A systematic review and meta-analysis. Int J Med Robot Comput Assist Surgery 13(4):e1843

    Article  Google Scholar 

  19. Tsutsui T, Goto T, Wada K, Takasago T, Hamada D, Sairyo K (2017) Efficacy of a computed tomography-based navigation system for placement of the acetabular component in total hip arthroplasty for developmental dysplasia of the hip. J Orthop Surg 25(3):1–7

    Article  Google Scholar 

  20. Pierrepont JW, Stambouzou CZ, Miles BP, O’Connor PB, Walter L, Ellis A, Molnar R, Baré JV, Solomon M, McMahon S, Shimmin A, Marel E (2016) Patient Specific Component Alignment in Total Hip Arthroplasty. Reconstructive Review 6(4)

  21. Kalteis T, Handel M, Herold T, Perlick L, Baethis H, Grifka J (2005) Greater accuracy in positioning of the acetabular cup by using an image-free navigation system, vol 29, pp 272–276

  22. Fukunishi S, Fukui T, Imamura F, Nishio S, Shibanuma N, Yoshiya S (2008) Assessment of accuracy of acetabular cup orientation in CT-free navigated total hip arthroplasty. Orthopedics, 31(10)

  23. Paprosky WG, Muir JM (2016) HIP®;: A 3D mini-optical navigation tool for improving intraoperative accuracy during total hip arthroplasty. Medical Devices: Evidence and Research 9:401–408

    Article  Google Scholar 

  24. Lembeck B, Mueller O, Reize P, Wuelker N (2005) Pelvic tilt makes acetabular cup navigation inaccurate. Acta Orthop 76(4):517–523

    Article  Google Scholar 

  25. Schumann S (2016) State of the art of ultrasound-based registration in computer assisted orthopedic interventions. In: Computational Radiology for Orthopaedic Interventions. Lecture Notes in Computational Vision and Biomechanics, vol 23, pp 271–297. Springer International Publishing

  26. Parratte S, Kilian P, Pauly V, Champsaur P, Argenson J-NA (2008) The use of ultrasound in acquisition of the anterior pelvic plane in computer-assisted total hip replacement. Journal of Bone and Joint Surgery - British Volume 90-B(2):258–263

    Article  Google Scholar 

  27. Barratt DC, Chan CSK, Edwards PJ, Penney GP, Slomczykowski M, Carter TJ, Hawkes DJ (2008) Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging. Med Image Anal 12(3):358–374

    Article  Google Scholar 

  28. Foroughi P, Song D, Chintalapani G, Taylor RH, Fichtinger G (2008) Localization of Pelvic Anatomical Coordinate System Using US/Atlas Registration for Total Hip Replacement. In: Miccai, pp 871–879. Springer, Berlin

  29. Schumann S, Puls M, Ecker T, Schwaegli T, Stifter J, Siebenrock K-A, Zheng G (2010) Determination of pelvic orientation from ultrasound images using patch-SSMs and a hierarchical speed of sound compensation strategy. In: IPCAI, pp 157–167. Springer, Berlin, Heidelberg

  30. Schumann S, Nolte L-P, Zheng G (2012) Determination of pelvic orientation from sparse ultrasound data for THA operated in the lateral position. Int J Med Robot Comput Assisted Surg 8(1):107–113

    Article  Google Scholar 

  31. Kistler M, Bonaretti S, Pfahrer M, Niklaus R, Büchler P. (2013) The virtual skeleton database: an open access repository for biomedical research and collaboration. J Med Internet Res 15(11):e245

    Article  Google Scholar 

  32. University of iowa magnetic resonance research facility. https://mri.radiology.uiowa.edu/images_main.html. Accessed: 2018-09-14

  33. Yushkevich PA, Piven J, Hazlett CH, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128. www.itksnap.org

  34. Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G (2008) MeshLab: an open-source mesh processing tool. In: 6th Eurographics Italian Chapter Conference. pp 129-136

  35. Guezou-Philippe A, Dardenne G, Salhi A, Burdin V, Lefevre C, Eric S (2020) Statistical shape modeling to determine the anterior pelvic plane for total hip arthroplasty. In: Proceedings of the annual international conference of the ieee engineering in medicine and biology society, EMBS, 2020-July:13641367

  36. Jacq JJ, Cresson T, Burdin V, Roux C (2008) Performing accurate joint kinematics from 3-D in vivo image sequences through consensus-driven simultaneous registration. IEEE Trans Biomed Eng 55 (5):1620–1633

    Article  Google Scholar 

  37. Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation A review. Med Image Anal 13(4):543–563

    Article  Google Scholar 

  38. Myronenko A, Song X (2010) Point Set Registration : Coherent Point Drift. IEEE Trans Pattern Anal Mach Intell 32(12):2262–2275

    Article  Google Scholar 

  39. Scalismo - scalable image analysis and shape modeling. Available online at: http://github.com/unibas-gravis/scalismo, 2016

  40. Davies R, Twining C, Chris T (2008) Statistical models of shape: optimisation and evaluation. Springer Science & Business Media

  41. Sarkalkan N, Weinans H, Zadpoor AA (2014) Statistical shape and appearance models of bones. Bone 60:129–140

    Article  Google Scholar 

  42. Mutsvangwa T, Burdin V (2015) Cedric schwartz, and christian roux. an automated statistical shape model developmental pipeline: Application to the human scapula and humerus. IEEE Trans Biomed Eng 62 (4):1098–1107

    Article  Google Scholar 

  43. Fuessinger MA, Schwarz S, Cornelius CP, Metzger MC, Ellis E, Probst F, Semper-Hogg W, Gass M, Stefan S (2018) Planning of skull reconstruction based on a statistical shape model combined with geometric morphometrics. Int J Comput Assisted Radiol Surg 13:519–529

    Article  Google Scholar 

  44. Zheng G, Li S, Székely G (2017) Statistical shape and deformation analysis. In Methods, implementation and applications. Academic Press, pp 3–32

  45. Rueckert D, Schnabel JA (2020) Model-based and data-driven strategies in medical image computing. Proc IEEE 108(1):110–124

    Article  Google Scholar 

  46. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models – their training and application. Comput Vis Image Underst 61(1):38–59

    Article  Google Scholar 

  47. Avants BB, Tustison NJ, Stauffer M, Song G, Baohua W, Gee JC (2014) The Insight ToolKit image registration framework. Front Neuroinform 8(APR):44

    Google Scholar 

  48. Lasso A, Heffter T, Rankin A, Pinter C, Ungi T, Fichtinger G (2014) PLUS: Open-source toolkit for ultrasound-guided intervention systems. IEEE Trans Biomed Eng 61(10):2527–2537

    Article  Google Scholar 

  49. Babisch JW, Layher F, Amiot LP (2008) The rationale for tilt-adjusted acetabular cup navigation. J Bone Joint Surgery - Ser A 90(2):357–365

    Article  Google Scholar 

  50. Horsak B, Schwab C, Durstberger S, Thajer A, Greber-Platzer S, Kainz H, Jonkers I, Kranzl A (2021) 3D free-hand ultrasound to register anatomical landmarks at the pelvis and localize the hip joint center in lean and obese individuals. Sci Rep 11(1):10650

    Article  Google Scholar 

  51. Pandey PU, Quader N, Guy P, Garbi R, Hodgson AJ (2020) Ultrasound bone segmentation: A scoping review of techniques and validation practices. Ultrasound Med Biol 46(4):921–935

    Article  Google Scholar 

  52. Villa M, Dardenne G, Nasan M, Letissier H, Hamitouche C, Stindel E (2018) Fcn-based approach for the automatic segmentation of bone surfaces in ultrasound images. Int J CARS 13(11):1707–1716

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the PLaTIMed platform for the access to the equipment allowing us to perform the in vivo experiments (www.platimed.fr).

Funding

This study received funding from the endowment fund INNOVEO of the University Hospital of Brest and the Brittany region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aziliz Guezou-Philippe.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guezou-Philippe, A., Dardenne, G., Letissier, H. et al. Anterior pelvic plane estimation for total hip arthroplasty using a joint ultrasound and statistical shape model based approach. Med Biol Eng Comput 61, 195–204 (2023). https://doi.org/10.1007/s11517-022-02681-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02681-2

Keywords