Skip to main content

Advertisement

Log in

A one-round medical image encryption algorithm based on a combined chaotic key generator

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Medical images of patients must be securely transmitted and kept private in telemedicine. To secure such medical images, this paper proposes a single round chaotic image encryption scheme based on a permutation-diffusion structure. A combined chaotic key generator (CCKG) is proposed to enhance key sensitivity and generation in order to improve the security of medical images to be encrypted. CCKG is used to produce the initial seeds for the fractional order chaotic system (FOCS) and Lorenz system (LS) for the permutation and diffusion processes, respectively. CCKG together with proposed permutation and diffusion methods enhances cipher image security in single round. Using zigzag transform (ZT) scanning, the plain image is first permuted block by block. The type of scanning used on each block is heavily influenced by the ZT selection from FOCS and LS. Following block-wise permutation, the permutation order (PO) generated from LS performs overall permutation. Based on the pixel positions, the overall permuted image is divided into odd and even parts. Then these parts of the images are diffused separately by the random pixel matrices generated by LS and FOCS. The cipher image is formed by combining the odd and even parts after diffusion. Secret key analysis, statistical analysis, differential attack analysis, and simulations confirm that with a single round of image encryption, the proposed system is competent, robust and effective.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Priyanka, Maheshkar S (2017) Region-based hybrid medical image watermarking for secure telemedicine applications. Multimedia Tools Appl 76:36173647. https://doi.org/10.1007/s11042-016-3913-1

    Article  Google Scholar 

  2. Garrity M (2019) “Malware attacks from within hospital, exposes need to encrypt medical imaging”, cyber security, Becker’s Healthcare, https://www.beckershospitalreview.com/cybersecurity/hospital-malware-attacks-from-within-exposes-need-to-encrypt-medical-imaging.html

  3. Kumar Patro KA, Acharya B (2019) An efficient colour image encryption scheme based on 1-D chaotic maps. J Inf Secur Appl 46:23–41. https://doi.org/10.1016/j.jisa.2019.02.006

    Article  Google Scholar 

  4. Kumar S, Panna B, Jha RK (2019) Medical image encryption using fractional discrete cosine transform with chaotic function. Med Biol Eng Comput 57:2517–2533. https://doi.org/10.1007/s11517-019-02037-3

    Article  Google Scholar 

  5. Lima VS, Madeiro F, Lima JB (2020) Encryption of 3D medical images based on a novel multiparameter cosine number transform. Comput Biol Med 121:103772. https://doi.org/10.1016/j.compbiomed.2020.103772

  6. Gopalakrishnan T, Ramakrishnan S (2019) Image encryption using hyper-chaotic map for permutation and diffusion by multiple hyper-chaotic maps. Wireless Pers Commun 109:437–454. https://doi.org/10.1007/s11277-019-06573-x

    Article  Google Scholar 

  7. Madhusudhan KN, Sakthivel P (2021) A secure medical image transmission algorithm based on binary bits and Arnold map. J Ambient Intell Human Comput 12:5413–5420. https://doi.org/10.1007/s12652-020-02028-5

    Article  Google Scholar 

  8. Ping P, Xu F, Mao Y, Wang Z (2018) Designing permutation–substitution image encryption networks with Henon map. Neurocomputing 283:53–63. https://doi.org/10.1016/j.neucom.2017.12.048

    Article  Google Scholar 

  9. Xu L, Gou X, Li Z, Li J (2017) A novel chaotic image encryption algorithm using block scrambling and dynamic index based diffusion. Opt Lasers Eng 91:41–52. https://doi.org/10.1016/j.optlaseng.2016.10.012

    Article  Google Scholar 

  10. Li Y, Wang C, Chen H (2017) A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation. Opt Lasers Eng 90:238–246. https://doi.org/10.1016/j.optlaseng.2016.10.020

    Article  Google Scholar 

  11. Chai X, Chen Y, Broyde L (2017) A novel chaos-based image encryption algorithm using DNA sequence operations. Opt Lasers Eng 88:197–213. https://doi.org/10.1016/j.optlaseng.2016.08.009

    Article  Google Scholar 

  12. Stallings W (2010) Cryptography and network security: principles and practice, 5th edn. Prentice Hall Press

  13. Lian S, Sun J, Wang Z (2005) A block cipher based on a suitable use of the chaotic standard map. Chaos, Solitons Fractals 26(1):117–129. https://doi.org/10.1016/j.chaos.2004.11.096

    Article  Google Scholar 

  14. Pareek NK, Patidar V, Sud KK (2006) Image encryption using chaotic logistic map. Image Vis Comput 24(9):926–934. https://doi.org/10.1016/j.imavis.2006.02.021

    Article  Google Scholar 

  15. Kwok HS, Tang WKS (2007) A fast image encryption system based on chaotic maps with finite precision representation. Chaos, Solitons Fractals 32(4):1518–1529. https://doi.org/10.1016/j.chaos.2005.11.090

    Article  Google Scholar 

  16. Wong K-W, Kwok BS-H, Law W-S (2008) A fast image encryption scheme based on chaotic standard map. Phys Lett A 372(15):2645–2652. https://doi.org/10.1016/j.physleta.2007.12.026

    Article  Google Scholar 

  17. Wang Y, Wong K-W, Liao X, Xiang T, Chen G (2009) A chaos-based image encryption algorithm with variable control parameters. Chaos, Solitons Fractals 41(4):1773–1783. https://doi.org/10.1016/j.chaos.2008.07.031

    Article  Google Scholar 

  18. Wong K-W, Kwok BS-H, Yuen C-H (2009) An efficient diffusion approach for chaos-based image encryption. Chaos, Solitons Fractals 41(5):2652–2663. https://doi.org/10.1016/j.chaos.2008.09.047

    Article  Google Scholar 

  19. Patidar V, Pareek NK, Sud KK (2009) A new substitution–diffusion based image cipher using chaotic standard and logistic maps. Commun Nonlinear Sci Numer Simul 14(7):3056–3075. https://doi.org/10.1016/j.cnsns.2008.11.005

    Article  Google Scholar 

  20. Rhouma R, Solak E, Belghith S (2010) Cryptanalysis of a new substitution–diffusion based image cipher. Commun Nonlinear Sci Numer Simul 15(7):1887–1892. https://doi.org/10.1016/j.cnsns.2009.07.007

    Article  Google Scholar 

  21. Ye R (2011) A novel chaos-based image encryption scheme with an efficient permutation-diffusion mechanism. Optics Communications 284(22):5290–5298. https://doi.org/10.1016/j.optcom.2011.07.070

    Article  Google Scholar 

  22. Zhang G, Liu Q (2011) A novel image encryption method based on total shuffling scheme. Optics Communications 284(12):2775–2780. https://doi.org/10.1016/j.optcom.2011.02.039

    Article  Google Scholar 

  23. Wang X, He G (2011) Cryptanalysis on a novel image encryption method based on total shuffling scheme. Optics Communications 284(24):5804–5807. https://doi.org/10.1016/j.optcom.2011.08.053

    Article  Google Scholar 

  24. Eslami Z, Bakhshandeh A (2013) An improvement over an image encryption method based on total shuffling. Optics Communications 286:51–55. https://doi.org/10.1016/j.optcom.2012.07.052

    Article  Google Scholar 

  25. Zhu C (2012) A novel image encryption scheme based on improved hyperchaotic sequences. Optics Communications 285(1):29–37. https://doi.org/10.1016/j.optcom.2011.08.079

    Article  Google Scholar 

  26. Wang X, Zhao J, Liu H (2012) A new image encryption algorithm based on chaos. Optics Communications 285(5):562–566. https://doi.org/10.1016/j.optcom.2011.10.098

    Article  Google Scholar 

  27. Zhu H, Zhao C, Zhang X, Yang L (2014) An image encryption scheme using generalized Arnold map and affine cipher. Optik - Int J Light Electron Opt 125(22):6672–6677. https://doi.org/10.1016/j.ijleo.2014.06.149

    Article  Google Scholar 

  28. Jeng F-G, Huang W-L, Chen T-H (2015) Cryptanalysis and improvement of two hyper-chaos-based image encryption schemes. Signal Process: Image Commun 34:45–51. https://doi.org/10.1016/j.image.2015.03.003

    Article  Google Scholar 

  29. Gao T, Chen Z (2008) A new image encryption algorithm based on hyper-chaos. Phys Lett A 372(4):394–400. https://doi.org/10.1016/j.physleta.2007.07.04

    Article  Google Scholar 

  30. Rhouma R, Belghith S (2008) Cryptanalysis of a new image encryption algorithm based on hyper-chaos. Phys Lett A 372(38):5973–5978. https://doi.org/10.1016/j.physleta.2008.07.05

    Article  Google Scholar 

  31. Belazi A, Abd El-Latif AA, Belghith S (2016) A novel image encryption scheme based on substitution-permutation network and chaos. Signal Process 128:155–170. https://doi.org/10.1016/j.sigpro.2016.03.021

    Article  Google Scholar 

  32. Gopalakrishnan T, Ramakrishnan S (2016) Chaotic image encryption with hash keying as key generator. IETE J Res 63(2):172–187. https://doi.org/10.1080/03772063.2016.1251855

    Article  Google Scholar 

  33. Banu SA, Amirtharajan R (2020) A robust medical image encryption in dual domain: chaos-DNA-IWT combined approach. Med Biol Eng Comput 58:1445–1458. https://doi.org/10.1007/s11517-020-02178-w

    Article  Google Scholar 

  34. Ravichandran D, Banu SA, Murthy B et al (2021) An efficient medical image encryption using hybrid DNA computing and chaos in transform domain. Med Biol Eng Comput 59:589–605. https://doi.org/10.1007/s11517-021-02328-8

    Article  Google Scholar 

  35. Liu L, Miao S (2016) A new image encryption algorithm based on logistic chaotic map with varying parameter. SpringerPlus 5:289. https://doi.org/10.1186/s40064-016-1959-1

  36. Ge M, Ye R (2018) A novel image encryption scheme based on 3D bit matrix and chaotic map with Markov properties. Egypt Inform J. https://doi.org/10.1016/j.eij.2018.10.001

    Article  Google Scholar 

  37. Chu YD, Li XF, Zhang JG, Chang YX (2007) Computer simulation and circuit implementation for a new autonomous chaotic system. J Sichuan Univ 44(3):550–556

    Google Scholar 

  38. Ranjith Kumar R, Jayasudha S, Pradeep S (2016) Efficient and secure data hiding in encrypted images: a new approach using chaos. Inf Secur J: A Global Perspect 25(4–6):235–246. https://doi.org/10.1080/19393555.2016.1248582

    Article  Google Scholar 

  39. Alzheimer’s Disease Neuroimaging Initiative (ADNI) Dataset: https://ida.loni.usc.edu/home/projectPage.jsp?project=ADNI

  40. Cheng J, Huang W, Cao S, Yang R, Yang W, Yun Z et al (2015) brainTumorDataPublic_1-766.zip. figshare. Dataset. https://doi.org/10.6084/m9.figshare.1512409.v1

    Article  Google Scholar 

  41. Lindner L, Kolodziej M, Egger J (2018) Skull-stripped contrast-enhanced MRI datasets. figshare. Dataset. https://doi.org/10.6084/m9.figshare.7472168.v1

    Article  Google Scholar 

  42. François M, Grosges T, Barchiesi D, Erra R (2012) A new image encryption scheme based on a chaotic function. Signal Processing: Image Communication, Elsevier 27(3):249–259

    Google Scholar 

  43. Yin Q, Wang C (2018) A new chaotic image encryption scheme using breadth-first search and dynamic diffusion. Int J Bifurcation Chaos 28(04):1850047. https://doi.org/10.1142/s0218127418500475

    Article  Google Scholar 

  44. Pareek NK, Patidar V, Sud KK (2013) Diffusion–substitution based gray image encryption scheme. Digital Signal Processing 23(3):894–901. https://doi.org/10.1016/j.dsp.2013.01.005

    Article  Google Scholar 

  45. Norouzi B, Mirzakuchaki S, Seyedzadeh SM, Mosavi MR (2012) A simple, sensitive and secure image encryption algorithm based on hyper-chaotic system with only one round diffusion process. Multimed Tools Appl 71(3):1469–1497. https://doi.org/10.1007/s11042-012-1292-9

    Article  Google Scholar 

  46. Etemadi Borujeni S, Eshghi M (2011) Chaotic image encryption system using phase-magnitude transformation and pixel substitution. Telecommun Syst. https://doi.org/10.1007/s11235-011-9458-8

    Article  Google Scholar 

  47. Masood F, Ahmad J, Shah SA, Jamal SS, Hussain I (2020) A novel hybrid secure image encryption based on Julia set of fractals and 3D Lorenz chaotic map. Entropy 22(3):274. https://doi.org/10.3390/e22030274

    Article  Google Scholar 

  48. Ranjith Kumar R, Balakumar M (2014) A new chaotic image encryption using parametric switching based permutation and diffusion. ICTACT j image video process 14(04):795–804. https://doi.org/10.21917/ijivp.2014.0114

    Article  Google Scholar 

  49. Fu C, Zhang G, Bian O, Lei W, Ma H (2014) A Novel medical image protection scheme using a 3-dimensional chaotic system. PLoS ONE 9(12):e115773. https://doi.org/10.1371/journal.pone.0115773

    Article  Google Scholar 

  50. Hua Z, Zhou B, Zhou Y (2018) Sine-transform-based chaotic system with FPGA implementation. IEEE Trans Industr Electron 65(3):2557–2566

    Article  Google Scholar 

  51. Xingyuan W, Junjian Z, Guanghui C (2019) An image encryption algorithm based on zigzag transform and LL compound chaotic system. Opt Laser Technol 119:105581. https://doi.org/10.1016/j.optlastec.2019.105581

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar D.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar D, Sudha V K & Ranjithkumar R A one-round medical image encryption algorithm based on a combined chaotic key generator. Med Biol Eng Comput 61, 205–227 (2023). https://doi.org/10.1007/s11517-022-02703-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02703-z

Keywords

Navigation