Skip to main content

Advertisement

Log in

Micro-mechanism study on tissue removal behavior under medical waterjet impact using coupled SPH-FEM

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract 

To fully grasp the numerical characteristics of the interaction process between medical waterjet and soft tissue, the smoothed particle hydrodynamics (SPH)–finite element method (FEM) was used in the simulation of this complex process to avoid the unstable error caused by indirect measurement in experiments. The SPH was applied to the numerical simulation of medical waterjet, and a three-dimensional model of gelatin sample was proposed with the FEM. The impact process between two extremely deformed materials was reproduced, and the established model was verified by comparison with experimental data; the comparison showed relatively consistent results. The separation effect under three operating modes was deduced with the stress and strain range. For the vertical impact condition, the higher the waterjet impact pressure is, the higher the biological tissue deformation bulge height is. For oblique intrusion, the longitudinal separation rate decreases and the kerf width increases with the increase of the incident angle. For the moving impact condition, with the increase of the waterjet moving speed, the longitudinal high-stress distribution range of the impact object decreases slightly.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References 

  1. Ghiraldi E, Higgins AM, Sterious S (2022) Initial experience performing “cautery-free waterjet ablation of the prostate.” J Endourol 36(9):1237–1242. https://doi.org/10.1089/end.2022.0062

    Article  PubMed  Google Scholar 

  2. Nguyen DD, Barber N, Bidair M, Gilling P, Anderson P, Zorn KC, Badlani G, Humphreys M, Kaplan S, Kaufman R, So A, Paterson R, Goldenberg L, Elterman D, Desai M, Lingeman J, Roehrborn C, Bhojani N (2021) WATER versus WATER II 2-year update: comparing aquablation therapy for benign prostatic hyperplasia in 30–80-cm(3) and 80–150-cm(3) prostates. Eur Urol Open Sci 25:21–28. https://doi.org/10.1016/j.euros.2021.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nag A, Hloch S, Dixit AR, Pude F (2020) Utilization of ultrasonically forced pulsating water jet decaying for bone cement removal. Int J Adv Manuf Tech 110(3–4):829–840. https://doi.org/10.1007/s00170-020-05892-9

    Article  Google Scholar 

  4. Hanaki T, Tsuda A, Fujiwara Y (2022) Influence of the water jet system vs cavitron ultrasonic surgical aspirator for liver resection on the remnant liver. World J Clin Cases 10(20):6855–6864. https://doi.org/10.12998/wjcc.v10.i20.6855

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tschan CA, Hermann EJ, Wagner W, Krauss JK, Oertel JMK (2010) Waterjet dissection in pediatric cranioplasty Technical note. J Neurosurg-Pediatr 5(3):243–249. https://doi.org/10.3171/2009.10.PEDS09308

    Article  PubMed  Google Scholar 

  6. Endo T, Takahashi Y, Nakagawa A, Niizuma K, Fujimura M, Tominaga T (2015) Use of actuator-driven pulsed water jet in brain and spinal cord cavernous malformations resection. Oper Neurosurg 11(3):394–403. https://doi.org/10.1227/NEU.0000000000000867

    Article  Google Scholar 

  7. Kunikata H, Tanaka Y, Aizawa N, Nakagawa A, Tominaga T, Nakazawa T (2014) Experimental application of piezoelectric actuator-driven pulsed water jets in retinal vascular surgery. Transl Vis Sci Techn 3(6):10. https://doi.org/10.1167/tvst.3.6.10

    Article  Google Scholar 

  8. Seto T, Yamamoto H, Takayama K, Nakagawa A, Tominaga T (2011) Characteristics of an actuator-driven pulsed water jet generator to dissecting soft tissue. Rev Sci Instrum 82(5):055105. https://doi.org/10.1063/1.3587069

    Article  CAS  PubMed  Google Scholar 

  9. Bahls T, Froehlich FA, Hellings A, Deutschmann B, Albu-Schaeffer AO (2017) Extending the capability of using a waterjet in surgical interventions by the use of robotics. IEEE T Bio-Med Eng 64:284–294. https://doi.org/10.1109/TBME.2016.2553720

    Article  Google Scholar 

  10. Babaiasl M, Boccelli S, Chen Y, Yang F, Ding JL, Swensen JP (2020) Predictive mechanics-based model for depth of cut (DOC) of waterjet in soft tissue for waterjet-assisted medical applications. Med Biol Eng Comput 58(8):1845–1872. https://doi.org/10.1007/s11517-020-02182-0

    Article  PubMed  Google Scholar 

  11. Takabi B, Tai BL (2017) A review of cutting mechanics and modeling techniques for biological materials. Med Eng Phys 45:1–14. https://doi.org/10.1016/j.medengphy.2017.04.004

    Article  PubMed  Google Scholar 

  12. Liu ZH, Liao ZR, Wang D, Wang CY, Song CL, Li HN, Liu Y (2022) Recent advances in soft biological tissue manipulating technologies. Chin J Mech Eng-En 35(1):89. https://doi.org/10.1186/s10033-022-00767-4

    Article  Google Scholar 

  13. Kang C (2016) Technical foundation and application of high pressure water jet, 1st edn. China Machine Press, Beijing (in Chinese)

    Google Scholar 

  14. Wang L, Xu F, Yang Y, Wang J (2019) A dynamic particle refinement strategy in smoothed particle hydrodynamics for fluid-structure interaction problems. Eng Anal Bound Elem 100:140–149. https://doi.org/10.1016/j.enganabound.2018.01.012

    Article  Google Scholar 

  15. Antonopoulou E, Harlen OG, Rump M, Segers T, Walkley MA (2021) Effect of surfactants on jet break-up in drop-on-demand inkjet printing. Phys Fluids 33(7):072112. https://doi.org/10.1063/5.0056803

    Article  CAS  Google Scholar 

  16. Du Y, Zhang F, Zhang A, Ma L, Zheng J (2016) Consequences assessment of explosions in pipes using coupled FEM-SPH method. J Loss Prevent Proc 43:549–558. https://doi.org/10.1016/j.jlp.2016.07.023

    Article  Google Scholar 

  17. Ma L, Bao R, Guo Y (2008) Waterjet penetration simulation by hybrid code of SPH and FEA. Int J Impact Eng 35(9):1035–1042. https://doi.org/10.1016/j.ijimpeng.2007.05.007

    Article  Google Scholar 

  18. Sun Z, Shi C, Xu F, Feng K, Zhou C, Wu X (2020) Detonation process analysis and interface morphology distribution of double vertical explosive welding by SPH 2D/3D numerical simulation and experiment. Mater Design 191:108630. https://doi.org/10.1016/j.matdes.2020.108630

    Article  Google Scholar 

  19. Ye T, Pan DY, Huang C, Liu MB (2019) Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications. Phys Fluids 31(1):011301. https://doi.org/10.1063/1.5068697

    Article  CAS  Google Scholar 

  20. Ren F, Fang T, Cheng X (2020) Study on rock damage and failure depth under particle water-jet coupling impact. Int J Impact Eng 139:103504. https://doi.org/10.1016/j.ijimpeng.2020.103504

    Article  Google Scholar 

  21. Tsuzuki S (2021) Reproduction of vortex lattices in the simulations of rotating liquid helium-4 by numerically solving the two-fluid model using smoothed-particle hydrodynamics incorporating vortex dynamics. Phys Fluids 33(8):087117. https://doi.org/10.1063/5.0060605

    Article  CAS  Google Scholar 

  22. Sugiura K, Inutsuka S (2017) An extension of Godunov SPH II: application to elastic dynamics. J Comput Phys 333:78–103. https://doi.org/10.1016/j.jcp.2016.12.026

    Article  Google Scholar 

  23. O'Toole B, Trabia M, Hixson R, Roy SK, Pena M, Becker S, et al (2015) Modeling plastic deformation of steel plates in hypervelocity impact experiments, in: Schonberg WP (ed), Procedia Engineering 458–465

  24. Poniaev SA, Kurakin RO, Sedov AI, Bobashev SV, Zhukov BG, Nechunaev AF (2017) Hypervelocity impact of mm-size plastic projectile on thin aluminum plate. Acta Astronaut 135:26–33. https://doi.org/10.1016/j.actaastro.2016.11.011

    Article  CAS  Google Scholar 

  25. Xiao Y, Dong H, Zhou J, Wang J (2017) Studying normal perforation of monolithic and layered steel targets by conical projectiles with SPH simulation and analytical method. Eng Anal Bound Elem 75:12–20. https://doi.org/10.1016/j.enganabound.2016.11.004

    Article  Google Scholar 

  26. Zhang LW, Ademiloye AS, Liew KM (2019) Meshfree and particle methods in biomechanics: prospects and challenges. Arch Comput Method E 26(5):1547–1576. https://doi.org/10.1007/s11831-018-9283-2

    Article  Google Scholar 

  27. Dong TW, Jiang SL, Wu JC, Liu HS, He YD (2020) Simulation of flow and mixing for highly viscous fluid in a twin screw extruder with a conveying element using parallelized smoothed particle hydrodynamics. Chem Eng Sci 212:115311. https://doi.org/10.1016/j.ces.2019.115311

    Article  CAS  Google Scholar 

  28. Xue Y, Si H, Hu Q (2017) The propagation of stress waves in rock impacted by a pulsed water jet. Powder Technol 320:179–190. https://doi.org/10.1016/j.powtec.2017.06.047

    Article  CAS  Google Scholar 

  29. Lin XD, Lu YY, Tang JR, Ao X, Zhang L (2014) Numerical simulation of abrasive water jet breaking rock with SPH-FEM coupling algorithm. J Vibration Shock 33:170–176. https://doi.org/10.13465/j.cnki.jvs.2014.18.028. (in Chinese)

    Article  Google Scholar 

  30. Jiang H, Liu Z, Gao K (2017) Numerical simulation on rock fragmentation by discontinuous water-jet using coupled SPH/FEA method. Powder Technol 312:248–259. https://doi.org/10.1016/j.powtec.2017.02.047

    Article  CAS  Google Scholar 

  31. Zhang Z, Wang L, Silberschmidt VV, Wang S (2016) SPH-FEM simulation of shaped-charge jet penetration into double hull: a comparison study for steel and SPS. Compos Struct 155:135–144. https://doi.org/10.1016/j.compstruct.2016.08.002

    Article  Google Scholar 

  32. Taddei L, Goumtcha AA, Roth S (2015) Smoothed particle hydrodynamics formulation for penetrating impacts on ballistic gelatin. Mech Res Commun 70:94–101. https://doi.org/10.1016/j.mechrescom.2015.09.010

    Article  Google Scholar 

  33. Vignjevic R, DeVuyst T, Campbell J (2021) The nonlocal, local and mixed forms of the SPH method. Comput Method Appl M 387:114164. https://doi.org/10.1016/j.cma.2021.114164

    Article  Google Scholar 

  34. Liang S, Chen Z (2019) SPH-FEM coupled simulation of SSI for conducting seismic analysis on a rectangular underground structure. B Earthq Eng 17(1):159–180. https://doi.org/10.1007/s10518-018-0456-z

    Article  Google Scholar 

  35. Li L, Wang FX, Li TY, Dai XD, Xing XY, Yang XC (2020) The effects of inclined particle water jet on rock failure mechanism: experimental and numerical study. J Petrol Sci Eng 185:106639. https://doi.org/10.1016/j.petrol.2019.106639

    Article  CAS  Google Scholar 

  36. Wang FX, Wang RH, Zhou WD, Chen GC (2017) Numerical simulation and experimental verification of the rock damage field under particle water jet impacting. Int J Impact Eng 102:169–179. https://doi.org/10.1016/j.ijimpeng.2016.12.019

    Article  Google Scholar 

  37. Wu ZJ, Yu FZ, Zhang PL, Liu XW (2019) Micro-mechanism study on rock breaking behavior under water jet impact using coupled SPH-FEM/DEM method with Voronoi grains. Eng Anal Bound Elem 108:472–483. https://doi.org/10.1016/j.enganabound.2019.08.026

    Article  Google Scholar 

  38. Appleby-Thomas GJ, Hazell PJ, Sheldon RP, Stennett C, Hameed A, Wilgeroth JM (2014) The high strain-rate behaviour of selected tissue analogues. J Mech Behav Biomed 33:124–135. https://doi.org/10.1016/j.jmbbm.2013.05.018

    Article  CAS  Google Scholar 

  39. Appleby-Thomas GJ, Hazell PJ, Wilgeroth JM, Shepherd CJ, Wood DC, Roberts A (2011) On the dynamic behavior of three readily available soft tissue simulants. J Appl Phys 109(8):084701. https://doi.org/10.1063/1.3573632

    Article  CAS  Google Scholar 

  40. Diba M, Polini A, Petre DG, Zhang Y (2018) Fiber-reinforced colloidal gels as injectable and moldable biomaterials for regenerative medicine. Mat Sci Eng C 92:143–150. https://doi.org/10.1016/j.msec.2018.06.038

    Article  CAS  Google Scholar 

  41. Chen F, Chen R, Jiang B (2020) The adaptive finite element material point method for simulation of projectiles penetrating into ballistic gelatin at high velocities. Eng Anal Bound Elem 117:143–156. https://doi.org/10.1016/j.enganabound.2020.03.022

    Article  Google Scholar 

  42. Sun F, Ma L, Zhu Y, Xu C (2018) Numerical analysis for impact effects of a pistol bullet on a gelatin target covered with UHMWPE fiber armor. J Vibration Shock 37:20–26. https://doi.org/10.13465/j.cnki.jvs.2018.13.004. (in Chinese)

    Article  Google Scholar 

  43. Johnson AF, Holzapfel M (2006) Numerical prediction of damage in composite structures from soft body impacts. J Mater Sci 41:6622–6630. https://doi.org/10.1007/s10853-006-0201-x

    Article  CAS  Google Scholar 

  44. Wen Y, Xu C, Jin Y, Batra RC (2017) Rifle bullet penetration into ballistic gelatin. J Mech Behav Biomed 67:40–50. https://doi.org/10.1016/j.jmbbm.2016.11.021

    Article  CAS  Google Scholar 

  45. Ravikumar N, Noble C, Cramphorn E, Taylor ZA (2015) A constitutive model for ballistic gelatin at surgical strain rates. J Mech Behav Biomed 47:87–94. https://doi.org/10.1016/j.jmbbm.2015.03.011

    Article  CAS  Google Scholar 

  46. Wen Y, Xu C, Chen A (2014) Study of constitutive model of ballistic gelatin at high strain rate. Acta Armamentarii 35:128–133. https://doi.org/10.3969/j.issn.1000-1093.2014.01.019. (in Chinese)

    Article  Google Scholar 

  47. Cao C, Zhao J, Li G, Ding H, Jin X, Song L (2019) Separation behaviour difference between gelatin and porcine liver under high-speed waterjet impact. IEEE Access 7:172021–172029. https://doi.org/10.1109/ACCESS.2019.2957032

    Article  Google Scholar 

  48. Xu XH, Yu J (1984) Rock crushing science. China Coal Industry Publishing House, Beijing, pp 257–258

    Google Scholar 

  49. Cao C, Li G, Jin X, Ding H, Zhao J (2020) Continuous fracture of soft tissue under high-speed waterjet impact and its quantification method. Mech Mater 151:103631. https://doi.org/10.1016/j.mechmat.2020.103631

    Article  Google Scholar 

  50. Cao C, Li G, Zhao J (2020) Non-rigid cutting of soft tissue: physical evidences of complex mechanical interaction process of soft materials. Eur Phys J Plus 135:848. https://doi.org/10.1140/epjp/s13360-020-00860-4

    Article  Google Scholar 

  51. MacManus DB, Maillet M, O’Gorman S, Pierrat B, Murphy JG, Gilchrist MD (2019) Sex- and age-specific mechanical properties of liver tissue under dynamic loading conditions. J Mech Behav Biomed 99:240–246. https://doi.org/10.1016/j.jmbbm.2019.07.028

    Article  CAS  Google Scholar 

  52. Etchell E, Juge L, Hatt A, Sinkus R, Bilston LE (2017) Liver stiffness values are lower in pediatric subjects than in adults and increase with age: a multifrequency MR elastography study. Radiology 283(1):222–230. https://doi.org/10.1148/radiol.2016160252

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express sincere appreciation to Prof. Giovanni Solitro and the anonymous reviewers for their valuable comments and suggestions for improving the presentation of the manuscript.

Funding

This research was funded by the Natural Science Foundation of Jiangsu Province [BK20210496], the Natural Science Foundation of Jiangsu Province [BK20190635], and the Priority Academic Program Development of Jiangsu Higher Education Institutions [PAPD].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Cao or Jiyun Zhao.

Ethics declarations

Ethics approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Zhao, J., Chao, L. et al. Micro-mechanism study on tissue removal behavior under medical waterjet impact using coupled SPH-FEM. Med Biol Eng Comput 61, 721–737 (2023). https://doi.org/10.1007/s11517-022-02732-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02732-8

Keywords

Navigation