Skip to main content

Advertisement

Log in

Vibration motor stimulation device in smart leggings that promotes motor performance in older people

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Globally, accelerated aging is taking place alongside increased life expectancy of the population. This poses a challenge to maintaining autonomy and independence as people age but preventing falls and disabilities. Currently, there are few specific technologies on the market that are focused on the rehabilitation and promotion of autonomy in older adults. This study presents the development of a prototype (Myoviber®) of a low-cost, wearable everyday garment, designed to stimulate the lower limbs by the application of focal muscle vibration and incorporating technical textile qualities. The presented approach is proactive and preventive, maintaining functionality for the elderly while integrating electronic technology into an everyday garment. For this, a comprehensive study was carried out that included the design of the leggings through anthropometric analyses, the development of vibration devices at a stable frequency located in the knee extensor muscle and a smart belt with wireless connection, and the optimization of the battery autonomy. The development of the prototype was carried out through the construction of a vibratory device, which was validated with biomechanical evaluations. The results show an increase in the functional capacity of the lower limbs, in relation to motor tasks such as postural balance and gait in older people.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. World Health Organization (2022) Ageing and health. Accessed: Oct. 20, 2022. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health

  2. Covinsky KE, Palmer RM, Fortinsky RH et al (2003) Loss of independence in activities of daily living in older adults hospitalized with medical illnesses: increased vulnerability with age. J Am Geriatr Soc 51(4):451–458. https://doi.org/10.1046/j.1532-5415.2003.51152.x

    Article  PubMed  Google Scholar 

  3. Bergen G, Stevens MR, Burns ER (2016) Falls and fall injuries among adults aged ≥65 years—United States. MMWR Morb Mortal Wkly Rep 65:993–998. https://doi.org/10.15585/mmwr.mm6537a2

    Article  PubMed  Google Scholar 

  4. Sattin RW (1992) Falls among older persons: a public health perspective. Annu Rev Public Health 13:489–508. https://doi.org/10.1146/annurev.pu.13.050192.002421

    Article  CAS  PubMed  Google Scholar 

  5. Herrera MS et al (2017) Chile y sus mayores. 10 años de la Encuesta Calidad de Vida en la Vejez UC - Caja Los Andes. [Online]. Available: https://www.senama.gob.cl/storage/docs/Chile-y-sus-Mayores-10-anos-de-Encuesta-Calidad-de-Vida-en-la-Vejez-2016.pdf

  6. López R, Mancilla E, Villalobos A, Herrera P (2015) “Manual de prevención de caídas en el adulto mayor.,” Gobierno Chile. Minist. salud., pp. 1–66, [Online]. Available: http://web.minsal.cl/portal/url/item/ab1f8c5957eb9d59e04001011e016ad7.pdf.

  7. Picorelli AM, Pereira LS, Pereira DS, Felício D, Sherrington C (2014) Adherence to exercise programs for older people is influenced by program characteristics and personal factors: a systematic review. J Physiother 60(3):151–156. https://doi.org/10.1016/j.jphys.2014.06.012

    Article  PubMed  Google Scholar 

  8. Choi A, Jung H, Lee KY et al (2019) Machine learning approach to predict center of pressure trajectories in a complete gait cycle: a feedforward neural network vs. LSTM network Med Biol Eng Comput 57:2693–2703. https://doi.org/10.1007/s11517-019-02056-0

    Article  PubMed  Google Scholar 

  9. Yasuda K, Hayashi Y, Tawara A, Iwata H (2019) Using a vibrotactile biofeedback device to augment foot pressure during walking in healthy older adults: a brief report. Front Psychol 10:1008. https://doi.org/10.3389/fpsyg.2019.01008

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee SH, Lee HJ, Chang WH, Choi BO, Lee J, Kim J, Ryu GH, Kim YH (2017) Gait performance and foot pressure distribution during wearable robot-assisted gait in elderly adults. J Neuroeng Rehabil 14:123. https://doi.org/10.1186/s12984-017-0333-z

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zukowski LA, Shaikh FD, Haggard AV, Hamel RN (2022) Acute effects of virtual reality treadmill training on gait and cognition in older adults: a randomized controlled trial. PLoS ONE 17(11):e0276989. https://doi.org/10.1371/journal.pone.0276989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nag A, Mukhopadhyay SC, Kosel J (2017) Wearable flexible sensors: a review. IEEE Sens J 17:3949–3960. https://doi.org/10.1109/JSEN.2017.2705700

    Article  CAS  Google Scholar 

  13. Torres Alonso E, Rodrigues DP, Khetani M et al (2018) Graphene electronic fibres with touch-sensing and light-emitting functionalities for smart textiles. npj Flex Electron 2:25. https://doi.org/10.1038/s41528-018-0040-2

    Article  Google Scholar 

  14. Pu X, Li L, Liu M, Jiang C, Du C, Zhao Z, Hu W, Wang ZL (2016) Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv Mater 28(1):98–105. https://doi.org/10.1002/adma.201504403

    Article  CAS  PubMed  Google Scholar 

  15. Yosephi MH, Ehsani F, Zoghi M, Jaberzadeh S (2018) Multi-session anodal tDCS enhances the effects of postural training on balance and postural stability in older adults with high fall risk: primary motor cortex versus cerebellar stimulation. Brain Stimul 11:1239–1250. https://doi.org/10.1016/j.brs.2018.07.044

    Article  PubMed  Google Scholar 

  16. Viseux F, Lemaire A, Barbier F, Charpentier P, Leteneur S, Villeneuve P (2019) How can the stimulation of plantar cutaneous receptors improve postural control? Rev Clin Comment, Neurophysiol Clin 49:263–268. https://doi.org/10.1016/j.neucli.2018.12.006

    Article  Google Scholar 

  17. Kwak K, Kim H, Kim D (2016) Variation of ankle biomechanical property according to vibro-perception threshold and vibration frequency. Biomed Eng Lett 6:16–25. https://doi.org/10.1007/s13534-016-0215-5

    Article  Google Scholar 

  18. Trung TQ, Lee NE (2016) Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv Mater 28(22):4338–4372. https://doi.org/10.1002/adma.201504244

    Article  CAS  PubMed  Google Scholar 

  19. Kim Y, Kwon YJ, Lee KE et al (2016) Flexible textile-based organic transistors using graphene/Ag nanoparticle electrode. Nanomaterials (Basel) 6(8):147. https://doi.org/10.3390/nano6080147

    Article  CAS  PubMed  Google Scholar 

  20. Pu X, Li L, Liu M et al (2016) Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv Mater 28(1):98–105. https://doi.org/10.1002/adma.201504403

    Article  CAS  PubMed  Google Scholar 

  21. Filippi GM, Brunetti O, Botti FM et al (2009) Improvement of stance control and muscle performance induced by focal muscle vibration in young-elderly women: a randomized controlled trial. Arch Phys Med Rehabil 90(12):2019–2025. https://doi.org/10.1016/j.apmr.2009.08.139

    Article  PubMed  Google Scholar 

  22. Benítez S, Carillo De Albornoz M, García Romero JC (2015) Respuesta endocrina a la aplicación de vibraciones de cuerpo completo en humanos. Rev Andal Med Deporte 8(3):109–114. https://doi.org/10.1016/j.ramd.2015.04.002

    Article  Google Scholar 

  23. Saggini R, Carmignano SM, Palermo T, Bellomo RG (2016) Mechanical vibration in rehabilitation: state of the art. J Nov Physiother 6:314. https://doi.org/10.4172/2165-7025.1000314

    Article  Google Scholar 

  24. Postolache G, Carvalho H, Catarino A, Postolache OA. (2017). Smart clothes for rehabilitation context: technical and technological issues. In: Postolache, O., Mukhopadhyay, S., Jayasundera, K., Swain, A. (eds) Sensors for Everyday Life. Smart Sensors, Measurement and Instrumentation, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-47319-2_10

  25. Priya A, Kumar A, Chauhan B (2015) A review of textile and cloth fabric wearable antennas. Int J Comput Appl 116(17):1–5. https://doi.org/10.5120/20425-2741

    Article  Google Scholar 

  26. Gonçalves C, Ferreira da Silva A, Gomes J, Simoes R (2018) Wearable e-textile technologies: a review on sensors, actuators and control elements. Inventions 3(1):14. https://doi.org/10.3390/inventions3010014

    Article  Google Scholar 

  27. Lee H, Jeong SW, Hyobin I, Roh J-S (2020) Design and fabrication of wearable male-type radio button-shaped vibrotactile actuators. Text Res J 90(3–4):422–432. https://doi.org/10.1177/0040517519868173

    Article  CAS  Google Scholar 

  28. Tajadura-Jiménez A, Väljamäe A, Kuusk K (2020) Altering one’s body-perception through e-textiles and haptic metaphors. AI Front Robot AI 18(7):1–15. https://doi.org/10.3389/frobt.2020.00007

    Article  Google Scholar 

  29. Kuusk K, Tajadura-Jiménez A, Väljamäe A (2018) Magic lining: an exploration of smart textiles altering people’s self-perception. ACM Int Conf Proceeding Ser 47:1–6. https://doi.org/10.1145/3212721.3212893

    Article  Google Scholar 

  30. Von Radziewsky L, Krüger A, Löchtefeld M. (2015). Scarfy - augmenting human fashion behaviour with self-actuated clothes. TEI 2015 - Proc. 9th Int. Conf. Tangible, Embed. Embodied Interact., 313–316. https://doi.org/10.1145/2677199.2680568

  31. Wang Q, Chen W, Timmermans AA, Karachristos C, Martens JB, Markopoulos P (2015) Smart Rehabilitation Garment for posture monitoring. Annu Int Conf IEEE Eng Med Biol 2015:5736–5739. https://doi.org/10.1109/EMBC.2015.7319695

    Article  CAS  Google Scholar 

  32. Wang Q, Timmermans A, Markopoulos P, Toeters M, Chen W. (2016) Zishi: a smart garment for posture monitoring. Conf Hum Factors Comput Syst 3792–3795https://doi.org/10.1145/2851581.2890262

  33. Bahadir SK, Koncar V, Kalaoglu F (2016) Smart shirt for obstacle avoidance for visually impaired persons. In Woodhead Publishing Series in Textiles,Smart Textiles and their Applications, Woodhead Publishing, 33–70. https://doi.org/10.1016/B978-0-08-100574-3.00003-5.

  34. Lampe R, Turova V, Alves-Pinto A (2019) Piano jacket for perceiving and playing music for patients with cerebral palsy. Disabil Rehabil Assist Technol 14(3):221–225. https://doi.org/10.1080/17483107.2017.1419384

    Article  PubMed  Google Scholar 

  35. Balpande SS, Kalambe J, Pande RS. (2018) Vibration energy harvester driven wearable biomedical diagnostic system. NEMS 2018 - 13th Annu. IEEE Int. Conf. Nano/Micro Eng. Mol. Syst. 448–451. https://doi.org/10.1109/NEMS.2018.8556864

  36. Ko J, Kim H (2016) A study on the smart clothing system using sensors. Inf 19(2):531–538

    Google Scholar 

  37. Issurin VB, Tenenbaum G (1999) Acute and residual effects of vibratory stimulation on explosive strength in elite and amateur athletes. J Sports Sci 17(3):177–182. https://doi.org/10.1080/026404199366073

    Article  CAS  PubMed  Google Scholar 

  38. Bruyere O, Wuidart MA, Di Palma E et al (2005) Controlled whole body vibration to decrease fall risk and improve health-related quality of life of nursing home residents. Arch Phys Med Rehabil 86(2):303–307. https://doi.org/10.1016/j.apmr.2004.05.019

    Article  PubMed  Google Scholar 

  39. Brunetti O, Filippi GM, Lorenzini M et al (2006) Improvement of posture stability by vibratory stimulation following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 14(11):1180–1187. https://doi.org/10.1007/s00167-006-0101-2

    Article  CAS  PubMed  Google Scholar 

  40. Fattorini L, Ferraresi A, Rodio A, Azzena GB, Filippi GM (2006) Motor performance changes induced by muscle vibration. Eur J Appl Physiol 98(1):79–87. https://doi.org/10.1007/s00421-006-0250-5

    Article  PubMed  Google Scholar 

  41. Fattorini L, Rodio A, Pettorossi VE, Filippi GM (2021) Is the focal muscle vibration an effective motor conditioning intervention? A systematic review. J Funct Morphol Kinesiol 6:39. https://doi.org/10.3390/jfmk6020039

    Article  PubMed  PubMed Central  Google Scholar 

  42. Khoo B, Mariappan M, Saad I. (2020) A sensorless speed estimation for brushed DC motor at start-up,” 2016. Accessed: Dec. 06, 2020. [Online]. Available: www.ijiset.com.

  43. MINSAL (2010) Manual de Aplicación del Examen de Medicina Preventiva del Adulto Mayor,” Programa Salud del Adulto Mayor Div. Prevención y Control Enfermedades Subsecr. Salud Pública, 2(5) 1–16, 2010, [Online]. Available: https://www.minsal.cl/portal/url/item/ab1f81f43ef0c2a6e04001011e011907.pdf.

  44. Formann A (1985) Constrained latent class models: theory and applications. Br J Math Stat Psychol 38(1):87–111. https://doi.org/10.1111/j.2044-8317.1985.tb00818.x

    Article  Google Scholar 

  45. Robertson MC, Gardner MM, Devlin N, McGee R, Campbell AJ (2001) Effectiveness and economic evaluation of a nurse delivered home exercise programme to prevent falls. 2: Controlled trial in multiple centers. BMJ 322(7288):701–704. https://doi.org/10.1136/bmj.322.7288.701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Surveillance of falls in older people (2019) assessing risk and prevention (NICE guideline CG161) [Internet]. National Institute for Health and Care Excellence (NICE), London

    Google Scholar 

  47. Almeida AH, Santos SA, Castro PJ, Rizzo JA, Batista GR (2013) Somatotype analysis of physically active individuals. J Sports Med Phys Fitness 53(3):268–273

    CAS  PubMed  Google Scholar 

  48. Carter JEL, et al. (1990) Somatotyping: development and applications, Cambridge University Press. https://books.google.co.in/books?id=eYDO0Yr3droC&printsec=frontcover#v=onepage&q&f=false (accessed Dec. 05, 2020).

  49. Bravo V, Caparros C, Zúñiga R, Muñoz J, Nicholis O, Barra R (2019) Anthropometric study among Chilean older adu. J Ergonomics 9:244. https://doi.org/10.35248/2165-7556.10.9.244

    Article  Google Scholar 

  50. Bellomo RG, Iodice P, Maffulli N, Maghradze T, Coco V, Saggini R (2013) Muscle strength and balance training in sarcopenic elderly: a pilot study with randomized controlled trial. Eur J Inflamm 11:193–201. https://doi.org/10.1177/1721727X1301100118

    Article  Google Scholar 

  51. Duarte M, Freitas SM (2010) Revision of posturography based on force plate for balance evaluation. Rev Bras Fisioter 14(3):183–192

    Article  PubMed  Google Scholar 

  52. Khandoker AH, Palaniswami M, Begg RKA (2008) A comparative study on approximate entropy measure and poincaré plot indexes of minimum foot clearance variability in the elderly during walking. J Neuroeng Rehabil 5:4. https://doi.org/10.1186/1743-0003-5-4

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fryar CD, Gu Q, Ogden CL (2012) Anthropometric reference data for children and adults: United states, 2007–2010. Vital Health Stat 11(252):1–48

    Google Scholar 

  54. Horak FB (2006) Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing 35(2):ii7–ii11. https://doi.org/10.1093/ageing/afl077

    Article  PubMed  Google Scholar 

  55. Celletti C, Fattorini L, Camerota F et al (2015) Focal muscle vibration as a possible intervention to prevent falls in elderly women: a pragmatic randomized controlled trial. Aging Clin Exp Res 27(6):857–863. https://doi.org/10.1007/s40520-015-0356-x

    Article  PubMed  Google Scholar 

  56. Tao X, Huang T, Shen C, Ko Y, Jou G, Koncar V (2018) Bluetooth low energy-based washable wearable activity motion and electrocardiogram textronic monitoring and communicating system”. Adv Mater Technol 3:1700309. https://doi.org/10.1002/admt.201700309

    Article  CAS  Google Scholar 

Download references

Funding

The authors received the support of the National Doctorate Scholarship ANID Chile, year 2019–2022 folio 21190910. This research was funded by the Agencia Nacional de Investigación y Desarrollo (ANID) to the Second Two-Stage IDeA Competition thematic in Adulto Mayor of the Fondo de Fomento al Desarrollo Científico y Tecnológico, FONDEF/ANID 2017, of smart leggings that improves the posture, movement, and quality of life of the older adults. Code ID17AM0023, Faculty of Engineering and Faculty of Health Sciences, Universidad de Talca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Bravo Carrasco.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrasco, V.B., Vidal, J.M. & Caparrós-Manosalva, C. Vibration motor stimulation device in smart leggings that promotes motor performance in older people. Med Biol Eng Comput 61, 635–649 (2023). https://doi.org/10.1007/s11517-022-02733-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02733-7

Keywords

Navigation