Skip to main content

Advertisement

Log in

Analysis of delirium prediction in the ICU based on the hybrid SGDCS-ANFIS approach

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In recent years, intensive care unit (ICU) doctors have paid more attention to delirium. ICU patients have a high risk of delirium. Delirium can lead to serious adverse outcomes, but early diagnosis and prediction of delirium are very difficult and lack effective assessment tools. The causes of delirium are many and complex, and there is no definite prediction model. To solve this problem, this paper proposes a delirium prediction model based on a hybrid cuckoo search algorithm with stochastic gradient descent—the adaptive-network-based fuzzy inference system (SGDCS-ANFIS) approach. Thirty-five relevant indicators of 1072 ICU cases (536 delirium cases and 536 nondelirium cases) were selected to establish a delirium prediction model to judge whether patients tended to experience delirium. The experiments show that the delirium prediction model based on the hybrid SGDCS-ANFIS approach has better performance than traditional classification and prediction machine learning approaches, and the accuracy is improved to 73.02%. It can provide some reference for the prediction of delirium, promote early diagnosis, and provide knowledge for early intervention to improve the prognosis of ICU patients. Adding this delirium prediction model to the ICU protocol will potentially improve the treatment outcome, quality, and cost. Doctors can manage sudden symptoms more calmly, and patients will also benefit. By collecting the real-time data commonly used in electronic medical records of ICUs, the proposed delirium prediction model can be easily applied in hospitals.

Graphical Abstract

Delirium can lead to serious adverse outcomes, but early diagnosis and prediction of delirium are very difficult and lack effective assessment tools. We propose a hybrid SGDCS-ANFIS approach to establish delirium prediction model to judge whether ICU patients tend to experience delirium. It can provide some reference for the prediction of delirium, promote early diagnosis, and provide knowledge for early intervention to improve the prognosis of ICU patients. By collecting the real-time data commonly used in electronic medical records of ICUs, the proposed delirium prediction model can be easily applied in hospitals.

Fig. Development flow from raw data to the building of the delirium prediction model and model comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel LJ, Fletcher-Janzem E (2008) Diagnostic and statistical manual of mental disorders. American Psychiatric Association. https://doi.org/10.1002/9780470373699.speced0655

    Article  Google Scholar 

  2. Salluh JIF, Wang H, Schneider EB et al (2015) Outcome of delirium in critically ill patients: systematic review and meta-analysis. BMJ 2015(350):h2538. https://doi.org/10.1136/bmj.h2538

    Article  Google Scholar 

  3. Shehabi Y, Riker RR, Bokesch PM et al (2010) Delirium duration and mortality in lightly sedated, mechanically ventilated intensive care patients. Crit Care Med 38(12):2311–2318. https://doi.org/10.1097/CCM.0b013e3181f85759

    Article  PubMed  Google Scholar 

  4. Vasilevskis EE, Chandrasekhar R, Holtze CH et al (2018) The cost of ICU delirium and coma in the intensive care unit patient. Med Care 56(10):890–897. https://doi.org/10.1097/MLR.0000000000000975

    Article  PubMed  PubMed Central  Google Scholar 

  5. Klein PMC, Klouwenberg IJ, Zaal CS et al (2014) The attributable mortality of delirium in critically ill patients: prospective cohort study. BMJ 349:g6652. https://doi.org/10.1136/bmj.g6652

    Article  Google Scholar 

  6. Girard TD, Thompson JL, De Pandharipan PP et al (2018) Clinical phenotypes of delirium during critical illness and severity of subsequent long-term cognitive impairment: a prospective cohort study. Lancet Respir Med 6(3):213–222. https://doi.org/10.1016/S2213-2600(18)30062-6

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685. https://doi.org/10.1109/21.256541

    Article  Google Scholar 

  8. Gómez C, Hornero R, Abásolo D et al (2009) Analysis of MEG background activity in Alzheimer’s disease using nonlinear methods and ANFIS. Ann Biomed Eng 37(3):586–594. https://doi.org/10.1007/s10439-008-9633-6

    Article  PubMed  Google Scholar 

  9. Tonekabonipour H, Emam A, Teshnelab M, et al (2011) Ischemia prediction via ECG using MLP and RBF predictors with ANFIS classifiers, Seventh International Conference on Natural Computation, 776-780. https://doi.org/10.1109/ICNC.2011.6022179

  10. Vosoulipour A, Teshnehlab M, Moghadam H A (2008) Classification on diabetes mellitus data-set based-on artificial neural networks and ANFIS, 4th Kuala Lumpur International Conference on Biomedical Engineering 2008, IFMBE Proceedings, vol 21. https://doi.org/10.1007/978-3-540-69139-6_12

  11. Azar AT (2013) A novel ANFIS application for prediction of post-dialysis blood urea concentration. Int J Intell Syst Technol Appl 12(2):87–110. https://doi.org/10.1504/IJISTA.2013.056091

    Article  Google Scholar 

  12. Yang X S, Deb S (2010) Cuckoo Search via Lévy flights, World Congress on Nature & Biologically Inspired Computing (NaBIC), 210-214. https://doi.org/10.1109/NABIC.2009.5393690

  13. Reynolds AM, Smith AD, Menzel R et al (2007) Displaced honeybees perform optimal scale-free search flights. Ecology 88(8):1955–1961. https://doi.org/10.1890/06-1916.1

    Article  PubMed  Google Scholar 

  14. Le C, Wen L (2014) Modified cuckoo search algorithm for solving engineering structural optimization problem. Appl Res Comput 31(3):679–683. https://doi.org/10.3969/j.issn.1001-3695.2014.03.009

    Article  Google Scholar 

  15. Liying W, Shaopu Y, Weiguo Z (2013) Structural damage identification of bridge erecting machine based on improved Cuckoo search algorithm. J Beijing Jiaotong Univ 37(4):168–173. https://doi.org/10.3969/j.issn.1673-0291.2013.04.033

    Article  Google Scholar 

  16. Tian Y, Liang Y Q, Peng Y J (2018) Cuckoo search algorithm based on stochastic gradient descent, proceedings of the fifth Euro-China conference on intelligent data analysis and applications, 891, 90–99. https://doi.org/10.1007/978-3-030-03766-6_10

  17. Takagi T, Sugeno M (1983) Derivation of fuzzy control rules from human operator’s control actions. IFAC Proceedings Volumes 16(13):55–60. https://doi.org/10.1016/S1474-6670(17)62005-6

    Article  Google Scholar 

  18. Johnson A, Pollard TJ, Shen L et al (2016) MIMIC-III, a freely accessible critical care database. Scientific Data 3:160035. https://doi.org/10.1038/sdata.2016.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pandharipande P, Cotton BA, Shintani A et al (2008) Prevalence and risk factors for development of delirium in surgical and trauma intensive care unit patients. J Trauma: Inj Infect Crit Care 65(1):34–41. https://doi.org/10.1097/TA.0b013e31814b2c4d

    Article  Google Scholar 

  20. Porta A, Colombo R, Marchi A et al (2018) Association between autonomic control indexes and mortality in subjects admitted to intensive care unit. Sci Rep 8:3486. https://doi.org/10.1038/s41598-018-21888-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Devlin JW, Skrobik Y, Gélinas C et al (2018) Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med 46(9):1532–1548. https://doi.org/10.1097/CCM.0000000000003259

    Article  PubMed  Google Scholar 

  22. Duceppe MA, Williamson DR, Elliott A et al (2017) Modifiable risk factors for delirium in critically ill trauma patients. J Intensive Care Med 34(4):330–336. https://doi.org/10.1177/0885066617698646

    Article  PubMed  Google Scholar 

  23. Hsieh SJ, Soto GJ, Hope AA et al (2015) The association between acute respiratory distress syndrome, delirium, and in-hospital mortality in intensive care unit patients. Am J Respir Crit Care Med 191(1):71–78. https://doi.org/10.1164/rccm.201409-1690OC

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mattar I, Chan MF, Childs C (2012) Factors causing acute delirium in critically ill adult patients: a systematic review. JBI Libr Syst Rev 10(3):187–231. https://doi.org/10.11124/jbisrir-2012-3

    Article  PubMed  Google Scholar 

  25. Marchi A, Colombo R, Guzzetti S et al (2013) Characterization of the cardiovascular control during modified head-up tilt test in healthy adult humans. Autonmic Neurosci 179(1–2):166–169. https://doi.org/10.1016/j.autneu.2013.08.071

    Article  Google Scholar 

  26. Zaal IJ, Devlin JW, Peelen LM et al (2015) A systematic review of risk factors for delirium in the ICU. Crit Care Med 43(1):40–47. https://doi.org/10.1097/CCM.0000000000000625

    Article  PubMed  Google Scholar 

  27. Pandharipande PP, Girard TD, Jackson JC et al (2013) Long-term cognitive impairment after critical illness. N Engl J Med 369(14):1306–1316. https://doi.org/10.1056/NEJMoa1301372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Inouye SK, Westendorp RGJ, Saczynski JS (2014) Delirium in Elderly People. The Lancet 383(9920):911–922. https://doi.org/10.1016/s0140-6736(13)60688-1

    Article  Google Scholar 

  29. Jinshi P, Yinji J, Sun-Mi L (2018) Triggers and nursing influences on delirium in intensive care units. Nurs Crit Care 23(1):8–15. https://doi.org/10.1111/nicc.12250

    Article  Google Scholar 

  30. Rood PJT, Zegers M, Ramnarain D et al (2021) The impact of nursing delirium preventive interventions in the ICU: a multicenter cluster-randomized controlled clinical trial. Am J Respir Crit Care Med 204(6):682–691. https://doi.org/10.1164/rccm.202101-0082OC

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongquan Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Liang, Y., Chen, Y. et al. Analysis of delirium prediction in the ICU based on the hybrid SGDCS-ANFIS approach. Med Biol Eng Comput 61, 673–683 (2023). https://doi.org/10.1007/s11517-022-02741-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02741-7

Keywords

Navigation