Skip to main content
Log in

Quantification of body ownership awareness induced by the visual movement illusion of the lower limbs: a study of electroencephalogram and surface electromyography

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The visual movement illusion (VMI) is a subjective experience. This illusion is produced by watching the subject’s motion video. At the same time, VMI evokes awareness of body ownership. We applied the power spectral density (PSD) matrix and the partial directed correlation (PDC) matrix to build the PPDC matrix for the γ2 band (34–98.5 Hz), combining cerebral cortical and musculomotor cortical complexity and PPDC to quantify the degree of body ownership. Thirty-five healthy subjects were recruited to participate in this experiment. The subjects’ electroencephalography (EEG) and surface electromyography (sEMG) data were recorded under resting conditions, observation conditions, illusion conditions, and actual seated front-kick movements. The results show the following: (1) VMI activates the cerebral cortex to some extent; (2) VMI enhances cortical muscle excitability in the rectus femoris and medial vastus muscles; (3) VMI induces a sense of body ownership; (4) the use of PPDC values, fuzzy entropy values of muscles, and fuzzy entropy values of the cerebral cortex can quantify whether VMI induces awareness of body ownership. These results illustrate that PPDC can be used as a biomarker to show that VMI affects changes in the cerebral cortex and as a quantitative tool to show whether body ownership awareness arises.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aoyama T, Kaneko F, Hayami T, Shibata E (2012) The effects of kinesthetic illusory sensation induced by a visual stimulus on the corticomotor excitability of the leg muscles. Neurosci Lett 514(1):106–109. https://doi.org/10.1016/j.neulet.2012.02.069

  2. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems Nat. Rev Neurosci 10:186–198

    CAS  Google Scholar 

  3. Blanke O (2012) Multisensory brain mechanisms of bodily self-consciousness. Nat Rev Neurosci 13:556–571. https://doi.org/10.1038/nrn3292

    Article  CAS  PubMed  Google Scholar 

  4. Collins DF, Prochazka A (1996) Movement illusions evoked by ensemble cutaneous input from the dorsum of the human hand. J Physiol 496(3):857–871. https://doi.org/10.1113/jphysiol.1996.sp021733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen W et al (2009) Measuring complexity using fuzzyen, apen, and sampen. Med Eng Phys 31(1):61–68. https://doi.org/10.1016/j.medengphy.2008.04.005

    Article  PubMed  Google Scholar 

  6. David N, Newen A, Vogeley K (2008) The, “sense of agency” and its underlying cognitive and neural mechanisms. Conscious Cogn 17:523–534. https://doi.org/10.1016/j.concog.2008.03.004

    Article  PubMed  Google Scholar 

  7. Dettmers Christian et al (2012) Motor imagery in stroke patients, or plegic patients with spinal cord or peripheral diseases. Acta Neurol Scand 126(4):238–247. https://doi.org/10.1111/j.1600-0404.2012.01680.x

    Article  CAS  PubMed  Google Scholar 

  8. Donoho DL, Johnstone I, Kerkyacharian Gérard, Picard D (1996) Density estimation by wavelet thresholding. Ann Stat 24(2):508–539

    Article  Google Scholar 

  9. Eklund G (1972) Position sense and state of contraction; the effects of vibration. J Neurol Neurosurg Psychiatry 35(5):606–611. https://doi.org/10.1136/jnnp.35.5.606

    Article  PubMed Central  Google Scholar 

  10. Gallagher S (2000) Philosophical conceptions of the self: implications for cognitive science. Trends Cogn Sci 4(1):14–21

    Article  CAS  PubMed  Google Scholar 

  11. Giraux P, Sirigu A (2003) Illusory movements of the paralyzed limb restore motor cortex activity. Neuroimage 20:S107–S111. https://doi.org/10.1016/j.neuroimage.2003.09.024

    Article  PubMed  Google Scholar 

  12. Goldberger Ary L et al (2002) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci 99(suppl 1):2466–2472

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hanakawa T, Dimyan MA, Hallett M (2008) Motor planning, imagery and execution in the distributed motor network: a time-course study with functional MRI. Cereb Cortex 18:2775–2788

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu H, Wang W, Xiang C, Han L, Nie H (2018) A de-noising method using the improved wavelet threshold function based on noise variance estimation. Mech Syst Signal Process 99:30–46

    Article  Google Scholar 

  15. Kanayama N, Sato A, Ohira H (2009) The role of gamma band oscillations and synchrony on rubber hand illusion and crossmodal integration [J]. Brain Cogn 69(1):19–29

    Article  PubMed  Google Scholar 

  16. Kaneko F, Yasojima T, Kizuka T (2007) Kinesthetic illusory feeling induced by a finger movement movie effects on corticomotor excitability. Neuroscience 149(4):976–984. https://doi.org/10.1016/j.neuroscience.2007.07.028

    Article  CAS  PubMed  Google Scholar 

  17. Kaneko Fuminari et al (2015) Brain regions associated to a kinesthetic illusion evoked by watching a video of one’s own moving hand. PloS One 10(8):e0131970. https://doi.org/10.1371/journal.pone.0131970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaneko F, Inada T, Matsuda N (2016) Acute effect of visually induced kinesthetic illusion in patients with stroke: a preliminary report. Inter J Neurorehab 3:212

    Google Scholar 

  19. Mahajan R, Morshed BI (2015) Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy, kurtosis, and Wavelet-ICA. IEEE J Biomed Health Inform 19(1):158–165

    Article  PubMed  Google Scholar 

  20. Moseley GL, Gallace A, Spence C (2012) Bodily illusions in health and disease: physiological and clinical perspectives and the concept of a cortical ‘body matrix’. Neurosci Biobehav Rev 36(1):34–46

    Article  PubMed  Google Scholar 

  21. Mullen T (2012) NITRC: CleanLine: Tool/Resource Info

  22. Naoki A, Yuji O, Shiro Y et al (2016) Functional connectivity analysis of NIRS data under rubber hand illusion to find a biomarker of sense of ownership [J]. Neural Plast 2016:1–9

    Google Scholar 

  23. Pereda E, Quiroga RQ, Bhattacharya J (2005) Nonlinear multivariate analysis of neurophysiological signals. Prog Neurobiol 77(1–2):1–37

    Article  PubMed  Google Scholar 

  24. Rampichini S et al (2020) Complexity analysis of surface electromyography for assessing the myoelectric manifestation of muscle fatigue: a review. Entropy 22(5):529. https://doi.org/10.3390/e22050529

    Article  PubMed  PubMed Central  Google Scholar 

  25. Reineberg AE, Banich MT (2016) Functional connectivity at rest is sensitive to individual differences in executive function: a network analysis Hum. Brain Mapp 37:2959–2975

    Article  Google Scholar 

  26. Cabin RJ, Mitchell RJ (2000) Bull Ecol Soc Am 81:246

    Google Scholar 

  27. Roth M, Decety J, Raybaudi M, Massarelli R, Delon-Martin C et al (1996) Possible involvement of primary motor cortex in mentally simulated movement: a functional magnetic resonance imaging study. NeuroReport 7:1280–1284

    Article  CAS  PubMed  Google Scholar 

  28. Sakai K, Ikeda Y, Amimoto K, Goto K, Morikawa K, Kumai K (2020) Brain regions activated during visual motor illusion of the ankle joint movement. J Asi Reha Sci 3:17–22

    Google Scholar 

  29. Sakai K et al (2020) Immediate effects of visual–motor illusion on resting-state functional connectivity. Brain Cogn 146:105632. https://doi.org/10.1016/j.bandc.2020.105632

    Article  PubMed  Google Scholar 

  30. Sakai K, Ikeda Y, Amimoto K (2018) Effect of kinesthetic illusion induced by visual stimulation on ankle dorsiflexion dysfunction in a stroke patient: ABAB single-case design. Neurocase 24:245–249

    Article  PubMed  Google Scholar 

  31. Shibata E, Kaneko F (2019) Event-related desynchronization possibly discriminates the kinesthetic illusion induced by visual stimulation from movement observation. Exp Brain Res 237(12):3233–3240. https://doi.org/10.1007/s00221-019-05665-1

    Article  PubMed  Google Scholar 

  32. Slater Mel et al (2009) Inducing illusory ownership of a virtual body. Front Neurosci 3:29

    Article  Google Scholar 

  33. Tsakiris M (2010) My body in the brain: a neurocognitive model of body-ownership. Neuropsychologia 48(3):703–712

    Article  PubMed  Google Scholar 

  34. Tsakiris M, Schutz-Bosbach S, Gallagher S (2007) On agency and body-ownership: phenomenological and neurocognitive reflections. Conscious Cogn 16:645–660. https://doi.org/10.1016/j.concog.2007.05.012

    Article  PubMed  Google Scholar 

  35. Whitfield-Gabrieli S, Nieto-Castanon A (2012) Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2:125–41

    Article  PubMed  Google Scholar 

  36. Zeller D, Gross C, Bartsch A et al (2011) Ventral premotor cortex may be required for dynamic changes in the feeling of limb ownership: a lesion study [J]. J Neurosci 31(13):4852–4857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun Z, Xi X, Yuan C, Yang Y, Hua X (2020) Surface electromyography signal denoising via EEMD and improved wavelet thresholds. Math Biosci Eng 17(6):6945–6962

    Article  PubMed  Google Scholar 

  38. Zhou Ping et al (2011) Characterizing the complexity of spontaneous motor unit patterns of amyotrophic lateral sclerosis using approximate entropy. J Neural Eng 8(6):066010. https://doi.org/10.1088/1741-2560/8/6/066010

    Article  PubMed  Google Scholar 

  39. Zhu X et al (2017) Re-evaluating electromyogram–force relation in healthy biceps brachii muscles using complexity measures. Entropy 19(11):624. https://doi.org/10.3390/e19110624

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers 61971169, 62061044, and U20B2074), Zhejiang Provincial Key Research and Development Program of China (grant number 2021C03031), Zhejiang Provincial Natural Science Foundation of China (grant number LQ21H180005), and Fundamental Research Funds for the Provincial Universities of Zhejiang (grant number GK199900299012-016).

Author information

Authors and Affiliations

Authors

Contributions

Jing Li: data curation, conceptualization, methodology, and writing original draft. Junhong Wang: software and writing. Ting Wang: supervision and experiment. Wanzeng Kong: investigation and conceptualization and formal analysis and supervision. Xugang Xi: project administration.

Corresponding author

Correspondence to Xugang Xi.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, J., Wang, T. et al. Quantification of body ownership awareness induced by the visual movement illusion of the lower limbs: a study of electroencephalogram and surface electromyography. Med Biol Eng Comput 61, 951–965 (2023). https://doi.org/10.1007/s11517-022-02744-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02744-4

Keywords

Navigation