Skip to main content
Log in

Wrist autonomy based on upper-limb synergy: a pilot study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Incorporating an electrically powered wrist can largely improve the dexterity of a prosthetic hand when grasping various objects; however, it also intensifies the difficulty of the hand’s operation due to the introduction of extra degrees of freedom (DOFs). The mechanism of multi-joint synergy in human body movements provides a new sight to solve this problem. In this paper, focusing on four typical manipulation activities of daily life (ADLs), 10 upper-limb joint angles were collected and analyzed first to verify the existence of synergy. Then, a linear regression model was established to predict the wrist rotation angle from the shoulder and elbow joints, which can be directly used as a control reference for achieving wrist autonomy. For both healthy and amputee subjects, experimental platforms were established and control tests were conducted, wherein the task completion time and compensatory movement during the four ADLs were evaluated. The results show that our synergy-based wrist autonomy method can effectively improve the completion efficiency of multiple ADLs without increasing the control complexity. Also, it can significantly reduce the compensatory movements of multiple joints compared to traditional prostheses using an idle wrist.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Montagnani F, Controzzi M, Cipriani C (2015) Is it finger or wrist dexterity that is missing in current hand prostheses? IEEE Trans Neural Syst Rehabil Eng 23(4):600–609. https://doi.org/10.1109/TNSRE.2015.2398112

    Article  PubMed  Google Scholar 

  2. Bertels T, Fiedler K, Schmalz T (2008) Biomechanical analysis in arm prosthetics objectifying of functional advantages offered by wrist flexion. J Prosthet Orthot 21(2):74–78

    Article  Google Scholar 

  3. Fougner A, Stavdahl KPJ, Losier YG, Parker PA (2012) Control of upper limb prostheses: terminology and proportional myoelectric control-a review. IEEE Trans Neural Syst Rehabil Eng 20(5):663–677

    Article  PubMed  Google Scholar 

  4. Rovira JLP, Ruíz RC, Rocon E, de Lima LS, Markovitz I, Saro B, Reynaerts D, Van Moorleghem W, Bueno L (2005) Virtual reality training and EMG control of the MANUS hand prosthesis. Robotica 23(3):311–317. https://doi.org/10.1017/S026357470400133X

    Article  Google Scholar 

  5. Reaz MBI, Hussain MS, Mohd-Yasin F (2008) Techniques of EMG signal analysis: detection, processing, classification and applications. Biological Procedures Online 10(1):11–35

    Article  Google Scholar 

  6. AsghariOskoei M, Hu H (2007) Myoelectric control systems—a survey. Biomed Signal Process Control 2(4):275–294. https://doi.org/10.1016/j.bspc.2007.07.009

    Article  Google Scholar 

  7. Scheme E, Englehart K (2011) Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J Rehabil Res Dev 48(6):643–659. https://doi.org/10.1682/JRRD.2010.09.0177

    Article  PubMed  Google Scholar 

  8. Meike A, Schweisfurth, Mario Koppe, Dario Farina (2018) Simultaneous control of multiple functions of bionic hand prostheses: performance and robustness in end users. Sci. Robotics, 3(19). https://doi.org/10.1126/scirobotics.aat3630.

  9. Jiang N, Rehbaum H, Vujaklija I, Graimann B, Farina D (2014) Intuitive, online, simultaneous, and proportional myoelectric control over two degrees-of-freedom in upper limb amputees. IEEE Trans Neural Syst Rehabil Eng 22(3):501–510. https://doi.org/10.1109/TNSRE.2013.2278411

    Article  PubMed  Google Scholar 

  10. Fougner AL, Stavdahl Ø, Kyberd PJ (2014) System training and assessment in simultaneous proportional myoelectric prosthesis control. J NeuroEng Rehabilitation (JNER) 11(1):1–24. https://doi.org/10.1186/1743-0003-11-75

    Article  Google Scholar 

  11. Yang D, Li J, Zhang X, Liu H (2020) Simultaneous estimation of 2-DOF wrist movements based on constrained non-negative matrix factorization and Hadamard product. Biomedical Signal Processing and Control, 56. https://doi.org/10.1016/j.bspc.2019.101729.

  12. Angkoon P, Erik S (2018) EMG pattern recognition in the era of big data and deep learning. Big Data and Cognitive Computing 2(3):21–21. https://doi.org/10.3390/bdcc2030021

    Article  Google Scholar 

  13. Ameri A, Akhaee MA, Scheme E, Englehart K (2019) Regression convolutional neural network for improved simultaneous EMG control. Journal of neural engineering 16(3):036015. https://doi.org/10.1088/1741-2552/ab0e2e

    Article  PubMed  Google Scholar 

  14. Xiaolong Zhai, Beth Jelfs, Rosa HM Chan, Chung Tin (2017) Self-recalibrating surface EMG pattern recognition for neuroprosthesis control based on convolutional neural network. Frontiers in Neuroscience, 11. https://doi.org/10.3389/fnins.2017.00379.

  15. Atzori M, Cognolato M, Mueller H (2016) Deep learning with convolutional neural networks applied to electromyography data: a resource for the classification of movements for prosthetic hands. Frontiers in Neurorobotics, 10. https://doi.org/10.3389/fnbot.2016.00009.

  16. Yang D, Liu H (2021) An EMG-based deep learning approach for multi-DOF wrist movement decoding. IEEE Transactions on Industrial Electronics, page 1–1. ISSN 0278–0046:1557–9948. https://doi.org/10.1109/tie.2021.3097666

    Article  Google Scholar 

  17. Soechting JF, Laquaniti F (1981) Invariant characteristics of a pointing movement in man. Jouranl of Neuroscience 1:710–720

    Article  CAS  Google Scholar 

  18. Lacquaniti F, Soechting JF, Terzuolo SA (1986) Path constraints on point-to-point arm movements in three-dimensional space. Neuroscience 17(2):313–324

    Article  CAS  PubMed  Google Scholar 

  19. Yang N, Zhang M, Huang C, Jin D (2002) Synergic analysis of upper limb target-reaching movements. J Biomech 35(6):739–746. https://doi.org/10.1016/S0021-9290(02)00018-0

    Article  PubMed  Google Scholar 

  20. Montagnani F, Controzzi M, Cipriani C (2015) Exploiting arm posture synergies in activities of daily living to control the wrist rotation in upper limb prostheses: a feasibility study. IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2462–2465.

  21. Bennett DA, Goldfarb M (2018) IMU-based wrist rotation control of a transradial myoelectric prosthesis. IEEE Trans Neural Syst Rehabil Eng 26(2):419–427

    Article  PubMed  Google Scholar 

  22. Kaliki RR (2015) A non-invasive and intuitive command source for upper limb prostheses. University Of Southern California. https://doi.org/10.25549/usctheses-m2764

    Article  Google Scholar 

  23. Manelle Merad, étienne de Montalivet, Agnès Roby-Brami, Nathanaël Jarrassé (2016) Intuitive prosthetic control using upper limb inter-joint coordinations and IMU-based shoulder angles measurement: a pilot study. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 5677–5682. https://doi.org/10.1109/IROS.2016.7759835.

  24. Light CM, Chappell PH, Kyberd PJ (2002) Establishing a standardized clinical assessment tool of pathologic and prosthetic hand function: normative data, reliability, and validity. Arch Phys Med Rehabil 83(6):776–783

    Article  PubMed  Google Scholar 

  25. Paskett Md, Nr Olsen, Ja George, Dt Kluger, Mr Brinton, Ts Davis, Cc Duncan, Ga Clark (2019) A modular transradial bypass socket for surface myoelectric prosthetic control in non-amputees. IEEE Trans Neural Syst Rehabil Eng 27(10):2070–2076

    Article  PubMed  Google Scholar 

  26. Zhang T, Jiang L, Liu H (2018) Design and functional evaluation of a dexterous myoelectric hand prosthesis with biomimetic tactile sensor. IEEE Trans Neural Syst Rehabil Eng. 26(7):1391–1399. https://doi.org/10.1109/TNSRE.2018.2844807

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 52075114), the Interdisciplinary Research Foundation of HIT (Grant No. IR2021218), and the Postdoctoral Scientific Research Development Fund (Grant No. LBH-W18058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dapeng Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The position of the IMU is considered a dynamic coordinate system. From the obtained data, the attitude matrix of the dynamic coordinate system of the joint can be calculated, that is, the rotation transformation matrix with respect to the stationary global coordinate system.

$$R=R\left(z,\varphi \right)R\left(y,\theta \right)R\left(x,f\right)=\left[\begin{array}{ccc}c\varphi c\theta & c\varphi s\theta sf-s\varphi cf& c\varphi s\theta cf-s\varphi sf\\ s\varphi c\theta & s\varphi s\theta sf+c\varphi cf& s\varphi s\theta cf+c\varphi sf\\ -s\theta & c\theta sf& c\theta cf\end{array}\right]$$
(2)

where φ,θ,f are the three Euler angles of yaw, pitch, and roll of IMU output, respectively.

The elements of the column vector of the rotation matrix R are the projections of the XYZ axes of the dynamic coordinate system onto each of the axes in the stationary coordinate system, so the vector representation of each axis of the dynamic coordinate system in the stationary coordinate system can be obtained as:

$$\overrightarrow{{\varvec{O}}{\varvec{X}}}=\left[c\varphi c\theta ,s\varphi c\theta ,-s\theta \right]$$
(3)
$$\overrightarrow{{\varvec{O}}{\varvec{Y}}}=\left[{\text{c}}\varphi s\theta sf-s\varphi cf,s\varphi s\theta sf+c\varphi cf,c\theta sf\right]$$
(4)
$$\overrightarrow{{\varvec{O}}{\varvec{Z}}}=\left[c\varphi s\theta cf-s\varphi sf,s\varphi s\theta cf+c\varphi sf,c\theta cf\right]$$
(5)

When solving the three angles A, B, and C of the shoulder, simply project the Y-axis vector of the elbow coordinate system \({\overrightarrow{{\varvec{O}}{\varvec{Y}}}}_{elbow}\) in the corresponding plane of the shoulder coordinate system, and the angle between the vector obtained by the projection and the corresponding shoulder coordinate axis is the desired angle. The formula for calculating the projection of a vector in the plane is introduced here:

$$pro{j}_{V}\left(\overrightarrow{X}\right)=T{({T}^{T}T)}^{-1}{T}^{T}\overrightarrow{{\varvec{X}}}$$
(6)

Where \(\overrightarrow{{\varvec{X}}}\) is the vector being projected and T is the basis vector matrix of the projection plane V. Then the angles A, B, and C can be found by the following equations:

$$A={\text{acos}}\left(\frac{pro{j}_{XOY\_shoulder}\left({\overrightarrow{{\varvec{O}}{\varvec{Y}}}}_{elbow}\right)\cdot {\overrightarrow{{\varvec{O}}{\varvec{Y}}}}_{shoulder}}{\left|pro{j}_{XOY\_shoulder}\left({\overrightarrow{{\varvec{O}}{\varvec{Y}}}}_{elbow}\right)\right|\cdot \left|{\overrightarrow{{\varvec{O}}{\varvec{Y}}}}_{shoulder}\right|}\right)$$
(7)
$$B={\text{acos}}\left(\frac{pro{j}_{YOZ\_shoulder}\left({\overrightarrow{{\varvec{O}}{\varvec{Y}}}}_{elbow}\right)\cdot {\overrightarrow{{\varvec{O}}{\varvec{Y}}}}_{shoulder}}{\left|pro{j}_{YOZ\_shoulder}\left({\overrightarrow{{\varvec{O}}{\varvec{Y}}}}_{elbow}\right)\right|\cdot \left|{\overrightarrow{{\varvec{O}}{\varvec{Y}}}}_{shoulder}\right|}\right)$$
(8)
$$C={\text{acos}}\left(\frac{pro{j}_{XOZ\_shoulder}\left({\overrightarrow{{\varvec{O}}{\varvec{Y}}}}_{elbow}\right)\cdot {\overrightarrow{{\varvec{O}}{\varvec{X}}}}_{shoulder}}{\left|pro{j}_{XOZ\_shoulder}\left({\overrightarrow{{\varvec{O}}{\varvec{Y}}}}_{elbow}\right)\right|\cdot \left|{\overrightarrow{{\varvec{O}}{\varvec{X}}}}_{shoulder}\right|}\right)$$
(9)

D and E can be derived directly from the equation for calculating the angle between the axes in the IMU coordinate system:

$$D={\text{acos}}\left(\frac{{\overrightarrow{OY}}_{elbow}\cdot {\overrightarrow{OY}}_{shoulder}}{\left|{\overrightarrow{OY}}_{elbow}\right|\cdot \left|{\overrightarrow{OY}}_{shoulder}\right|}\right)$$
(10)
$$E={180}^{\circ }\text{-acos}\left(\frac{{\overrightarrow{OY}}_{wrist}\cdot {\overrightarrow{OY}}_{elbow}}{\left|{\overrightarrow{OY}}_{wrist}\right|\cdot \left|{\overrightarrow{OY}}_{elbow}\right|}\right)$$
(11)

According to the principle of the uniqueness of the relative transformation matrix between two rotational matrices, F, G, H, I, and J can be solved. Taking G as an example, the transformation matrix of the elbow coordinate system with respect to the shoulder coordinate system can be expressed as:

$${{}^{shoulder}R}_{elbow}={R}_{shoulder}^{-1}{R}_{elbow}$$
(12)

At the same time, this transformation matrix can also be expressed by the existing angle as:

$$\begin{array}{c}{{}^{shoulder}R}_{elbow}=R\left(y,-C\right)R\left(z,90-D\right)R\left(x,G\right)R\left(z,90\right)R\left(x,180\right)=\\ \left[\begin{array}{ccc}-c(D)c(C)c(G)-s(C)s(G)& -s(D)c(C)& s(C)c(G)-c(D)c(C)s(G)\\ -s(D)c(G)& c(D)& -s(D)s(G)\\ -c(D)s(C)c(G)+c(C)s(G)& -s(D)s(C)& -c(C)c(G)-c(D)s(C)s(G)\end{array}\right]\end{array}$$
(13)

The result of G can be obtained by using the equality of the corresponding elements of the matrix.

$$G=\mathrm{atan}\left({{}^{shoulder}R}_{elbow}(\mathrm{2,3})/{{}^{shoulder}R}_{elbow}(\mathrm{2,1})\right)$$
(14)

The transformation matrix of the wrist coordinate system with respect to the elbow coordinate system can be expressed as:

$${{}^{elbow}R}_{wrist}={R}_{elbow}^{-1}{R}_{wrist}$$
(15)

At the same time, this transformation matrix can again be expressed by the existing angle as:

$${{}^{elbow}R}_{wrist}=R(x,E-180)R(y,F)$$
(16)

A result of F can be obtained.

$$F=\mathrm{atan}\left({{}^{elbow}R}_{wrist}(\mathrm{1,3})/{{}^{elbow}R}_{wrist}(\mathrm{1,1})\right)=\left[\begin{array}{ccc}c(F)& 0& s(F)\\ -s(E)s(F)& c(E)& c(F)s(E)\\ -c(E)s(F)& -s(E)& c(E)c(F)\end{array}\right]$$
(17)

H, I, and J are the same, and no further derivation is made here.

Appendix 2

$${F}^{^{\prime}}={K}_{0}+A*{K}_{A}+B*{K}_{B}+C*{K}_{C}+D*{K}_{D}+E*{K}_{E}+G*{K}_{G}$$

Table 2

Table 2 Summary of synergistic analysis of upper limb joints in healthy individuals

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Yang, D., Ge, Z. et al. Wrist autonomy based on upper-limb synergy: a pilot study. Med Biol Eng Comput 61, 1149–1166 (2023). https://doi.org/10.1007/s11517-023-02783-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02783-5

Keywords

Navigation