Abstract
Respiration and cardiac activity are strictly interconnected with reciprocal influences. They act as weakly coupled oscillators showing varying degrees of phase synchronization and their interactions are affected by mechanical ventilation. The study aims at differentiating the impact of three ventilatory modes on the cardiorespiratory phase coupling in critically ill patients. The coupling between respiration and heartbeat was studied through cardiorespiratory phase synchronization analysis carried out via synchrogram during pressure control ventilation (PCV), pressure support ventilation (PSV), and neurally adjusted ventilatory assist (NAVA) in critically ill patients. Twenty patients were studied under all the three ventilatory modes. Cardiorespiratory phase synchronization changed significantly across ventilatory modes. The highest synchronization degree was found during PCV session, while the lowest one with NAVA. The percentage of all epochs featuring synchronization regardless of the phase locking ratio was higher with PCV (median: 33.9%, first–third quartile: 21.3–39.3) than PSV (median: 15.7%; first–third quartile: 10.9–27.8) and NAVA (median: 3.7%; first–third quartile: 3.3–19.2). PCV induces a significant amount of cardiorespiratory phase synchronization in critically ill mechanically ventilated patients. Synchronization induced by patient-driven ventilatory modes was weaker, reaching the minimum with NAVA. Findings can be explained as a result of the more regular and powerful solicitation of the cardiorespiratory system induced by PCV.
Graphical Abstract
The degree of phase synchronization between cardiac and respiratory activities in mechanically ventilated humans depends on the ventilatory mode





Similar content being viewed by others
References
Elstad M, O’Callaghan EL, Smith AJ, Ben-Tal A, Ramchandra R (2018) Cardiorespiratory interactions in humans and animals: rhythms for life. Am J Physiol 315:H6–H17. https://doi.org/10.1152/ajpheart.00701.2017
Hess A, Yu L, Klein I, De Mazancourt M, Jebrak G, Mal H et al (2013) Neural mechanisms underlying breathing complexity. PLoS One 8:e75740. https://doi.org/10.1371/journal.pone.0075740
Eckberg DL, Kifle YT, Roberts VL (1980) Phase relationship between normal human respiration and baroreflex responsiveness. J Physiol 304:489–502. https://doi.org/10.1113/jphysiol.1980.sp013338
Berntson GG, Cacioppo JT, Quigley KS (1993) Respiratory sinus arrhythmia: autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology 30:183–196. https://doi.org/10.1111/j.1469-8986.1993.tb01731.x
Yasuma F, Hayano J (2004) Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm? Chest 125:683–690. https://doi.org/10.1378/chest.125.2.683
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065
Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P et al (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 59:178–193. https://doi.org/10.1161/01.res.59.2.178
Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222. https://doi.org/10.1126/science.6166045
Hopf HB, Skyschally A, Heusch G, Peters J (1995) Low-frequency spectral power of heart rate variability is not a specific marker of cardiac sympathetic modulation. Anesthesiology 82:609–619. https://doi.org/10.1097/00000542-199503000-00002
Goldsmith RL, Bigger JT, Steinman RC, Fleiss JL (1992) Comparison of 24-hour parasympathetic activity in endurance-trained and untrained young men. J Am Coll Cardiol 20:552–558. https://doi.org/10.1016/0735-1097(92)90007-a
Cook JR, Bigger JT, Kleiger RE, Fleiss JL, Steinman RC, Rolnitzky LM (1991) Effect of atenolol and diltiazem on heart period variability in normal persons. J Am Coll Cardiol 17:480–484. https://doi.org/10.1016/s0735-1097(10)80119-6
Galletly DC, Larsen PD (1998) Relationship between cardioventilatory coupling and respiratory sinus arrhythmia. Br J Anaesth 80:164–168. https://doi.org/10.1093/bja/80.2.164
Larsen PD, Tzeng YC, Sin PY, Galletly DC (2010) Respiratory sinus arrhythmia in conscious humans during spontaneous respiration. Respir Physiol Neurobiol 174:111–118. https://doi.org/10.1016/j.resp.2010.04.021
Stefanovska A, Haken H, McClintock PV, Hozic M, Bajrovic F, Ribaric S (2000) Reversible transitions between synchronization states of the cardiorespiratory system. Phys Rev Lett 85:4831–4834. https://doi.org/10.1103/PhysRevLett.85.4831
Sola-Soler J, Giraldo BF, Fiz JA, Jane R (2015) Cardiorespiratory phase synchronization in OSA subjects during wake and sleep states. Proc Ann Int Conf IEEE Eng Med Biol Soc IEEE 2015:7708–7711. https://doi.org/10.1109/EMBC.2015.7320178
Prokhorov MD, Ponomarenko VI, Gridnev VI, Bodrov MB, Bespyatov AB (2003) Synchronization between main rhythmic processes in the human cardiovascular system. Phys Rev E 68:041913 https://doi.org/10.1103/PhysRevE.68.041913
Wu SD, Lo PC (2010) Cardiorespiratory phase synchronization during normal rest and inward-attention meditation. Int J Cardiol 141:325–328. https://doi.org/10.1016/j.ijcard.2008.11.137
Bartsch R, Kantelhardt JW, Penzel T, Havlin S (2007) Experimental evidence for phase synchronization transitions in the human cardiorespiratory system. Phys Rev Lett 98:054102. https://doi.org/10.1103/PhysRevLett.98.054102
Mazzucco CE, Marchi A, Bari V, De Maria B, Guzzetti S, Raimondi F et al (2017) Mechanical ventilatory modes and cardioventilatory phase synchronization in acute respiratory failure patients. Physiol Meas. https://doi.org/10.1088/1361-6579/aa56ae
Cairo B, de Abreu RM, Bari V, Gelpi F, De Maria B, Rehder-Santos P et al (2021) Optimizing phase variability threshold for automated synchrogram analysis of cardiorespiratory interactions in amateur cyclists. Phil Trans R Soc A 379:20200251. https://doi.org/10.1098/rsta.2020.0251
Schafer C, Rosenblum MG, Kurths J, Abel HH (1998) Heartbeat synchronized with ventilation. Nature 392:239–240. https://doi.org/10.1038/32567
Pikovsky A, Zaks M, Rosenblum M, Osipov G, Kurths J (1997) Phase synchronization of chaotic oscillations in terms of periodic orbits. Chaos 7:680–687. https://doi.org/10.1063/1.166265
Beda A, Guldner A, Simpson DM, Carvalho NC, Franke S, Uhlig C et al (2012) Effects of assisted and variable mechanical ventilation on cardiorespiratory interactions in anesthetized pigs. Physiol Meas 33:503–519. https://doi.org/10.1088/0967-3334/33/3/503
Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S et al (1999) Neural control of mechanical ventilation in respiratory failure. Nat Med 5:1433–1436. https://doi.org/10.1038/71012
Schmidt M, Demoule A, Cracco C, Gharbi A, Fiamma MN, Straus C et al (2010) Neurally adjusted ventilatory assist increases respiratory variability and complexity in acute respiratory failure. Anesthesiology 112:670–681. https://doi.org/10.1097/ALN.0b013e3181cea375
Schmidt M, Kindler F, Cecchini J, Poitou T, Morawiec E, Persichini R et al (2015) Neurally adjusted ventilatory assist and proportional assist ventilation both improve patient-ventilator interaction. Crit Care 19:56. https://doi.org/10.1186/s13054-015-0763-6
Barwing J, Ambold M, Linden N, Quintel M, Moerer O (2009) Evaluation of the catheter positioning for neurally adjusted ventilatory assist. Intensive Care Med. 35:1809–1814. https://doi.org/10.1007/s00134-009-1587-0
Porta A, Baselli G, Lombardi F, Cerutti S, Antolini R, Del Greco M et al (1998) Performance assessment of standard algorithms for dynamic R-T interval measurement: comparison between R-Tapex and R-T(end) approach. Med Biol Eng Comput 36:35–42. https://doi.org/10.1007/bf02522855
Schafer C, Rosenblum MG, Abel HH, Kurths J (1999) Synchronization in the human cardiorespiratory system. Phys Rev E 60:857–870. https://doi.org/10.1103/physreve.60.857
Moser M, Lehofer M, Hildebrandt G, Voica M, Egner S, Kenner T (2008) Phase- and frequency coordination of cardiac and respiratory function. Biol Rhythm Res 26:100–111. https://doi.org/10.1080/09291019509360328
Bettermann H, Cysarz D, Van Leeuwen P (2002) Comparison of two different approaches in the detection of intermittent cardiorespiratory coordination during night sleep. BMC Physiol 2:18. https://doi.org/10.1186/1472-6793-2-18
Bartsch RP, Schumann AY, Kantelhardt JW, Penzel T, Ivanov P (2012) Phase transitions in physiologic coupling. Proc Natl Acad Sci USA 109:10181–10186. https://doi.org/10.1073/pnas.1204568109
Cysarz D, Bettermann H, Lange S, Geue D, van Leeuwen P (2004) A quantitative comparison of different methods to detect cardiorespiratory coordination during night-time sleep. Biomed Eng Online 3:44. https://doi.org/10.1186/1475-925X-3-44
Masè M, Glass L, Disertori M, Ravelli F (2013) The AV synchrogram: a novel approach to quantify atrioventricular coupling during atrial arrhythmias. Biomed Signal Process Control 8:1008–1016. https://doi.org/10.1016/j.bspc.2013.01.004
Iatsenko D, Bernjak A, Stankovski T, Shiogai Y, Owen-Lynch PJ, Clarkson PB et al (2013) Evolution of cardiorespiratory interactions with age. Phil Tran R Soc A 371:20110622. https://doi.org/10.1098/rsta.2011.0622
Nguyen CD, Wilson SJ, Crozier S (2012) Automated quantification of the synchrogram by recurrence plot analysis. IEEE Trans Biomed Eng 59:946–955. https://doi.org/10.1109/TBME.2011.2179937
Marshall JC (2000) Complexity, chaos, and incomprehensibility: parsing the biology of critical illness. Crit Care Med 28:2646–2648. https://doi.org/10.1097/00003246-200007000-00080
Goldberger AL (2001) Heartbeats, hormones, and health: is variability the spice of life? Am J Respir Crit Care Med 163:1289–1290. https://doi.org/10.1164/ajrccm.163.6.ed1801a
Goldberger AL (2006) Giles F. Filley lecture. Complex systems. Proc Am Thorac Soc 3:467–471. https://doi.org/10.1513/pats.200603-028MS
Goldberger AL (1992) Applications of chaos to physiology and medicine. In: Kim JH, Stringer J (eds), Applied Chaos. John Wiley & Sons, New York
Buchman TG, Stein PK, Goldstein B (2002) Heart rate variability in critical illness and critical care. Curr Opin Crit Care 8:311–315. https://doi.org/10.1097/00075198-200208000-00007
Mazzeo AT, La Monaca E, Di Leo R, Vita G, Santamaria LB (2011) Heart rate variability: a diagnostic and prognostic tool in anesthesia and intensive care. Acta Anaesthesiol Scand 55:797–811. https://doi.org/10.1111/j.1399-6576.2011.02466.x
Goldstein B, Fiser DH, Kelly MM, Mickelsen D, Ruttimann U, Pollack MM (1998) Decomplexification in critical illness and injury: relationship between heart rate variability, severity of illness, and outcome. Crit Care Med 26:352–357. https://doi.org/10.1097/00003246-199802000-00040
Godin PJ, Buchman TG (1996) Uncoupling of biological oscillators: a complementary hypothesis concerning the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 24:1107–1116. https://doi.org/10.1097/00003246-199607000-00008
Porta A, Di Rienzo M, Wessel N, Kurths J (2009) Addressing the complexity of cardiovascular regulation. Phil Trans R Soc A 367:1215–1218. https://doi.org/10.1098/rsta.2008.0292
Zhu Y, Hsieh YH, Dhingra RR, Dick TE, Jacono FJ, Galan RF (2013) Quantifying interactions between real oscillators with information theory and phase models: application to cardiorespiratory coupling. Phys Rev E 87:022709. https://doi.org/10.1103/PhysRevE.87.022709
Dick TE, Hsieh YH, Dhingra RR, Baekey DM, Galan RF, Wehrwein E et al (2014) Cardiorespiratory coupling: common rhythms in cardiac, sympathetic, and respiratory activities. Prog Brain Res 209:191–205. https://doi.org/10.1016/B978-0-444-63274-6.00010-2
Suki B, Alencar AM, Sujeer MK, Lutchen KR, Collins JJ, Andrade JS Jr et al (1998) Life-support system benefits from noise. Nature 393:127–128. https://doi.org/10.1038/30127
Mutch WA, Harms S, Lefevre GR, Graham MR, Girling LG, Kowalski SE (2000) Biologically variable ventilation increases arterial oxygenation over that seen with positive end-expiratory pressure alone in a porcine model of acute respiratory distress syndrome. Crit Care Med 28:2457–2464. https://doi.org/10.1097/00003246-200007000-00045
Mutch WA, Harms S, Ruth Graham M, Kowalski SE, Girling LG, Lefevre GR (2000) Biologically variable or naturally noisy mechanical ventilation recruits atelectatic lung. Am J Respir Crit Care Med 162:319–323. https://doi.org/10.1164/ajrccm.162.1.9903120
Suki B (2002) Fluctuations and power laws in pulmonary physiology. Am J Respir Crit Care Med 166:133–137. https://doi.org/10.1164/rccm.200202-152pp
Martins de Abreu R, Catai AM, Cairo B, Rehder-Santos P, Donisete da Silva C, De Favari Signini E, Sakaguchi CA, Porta A (2020) A transfer entropy approach for the assessment of the impact of inspiratory muscle training on the cardiorespiratory coupling of amateur cyclists. Front Physiol 11:134. https://doi.org/10.3389/fphys.2020.00134
Dick TE, Morris KF (2004) Quantitative analysis of cardiovascular modulation in respiratory neural activity. J Physiol 556:959–970. https://doi.org/10.1113/jphysiol.2003.060418
Bartsch RP, Liu KK, Ma QD, Ivanov PC (2014) Three independent forms of cardio-respiratory coupling: transitions across sleep stages. Comput Cardiol 41:781–784
Wu MC, Hu CK (2006) Empirical mode decomposition and synchrogram approach to cardiorespiratory synchronization. Phys Rev E 73:051917. https://doi.org/10.1103/PhysRevE.73.051917
Porta A, Faes L (2013) Assessing causality in brain dynamics and cardiovascular control. Phil Trans R Soc A 371:20120517. https://doi.org/10.1098/rsta.2012.0517
Galletly DC, Larsen PD (2001) Cardioventilatory coupling in heart rate variability: methods for qualitative and quantitative determination. Br J Anaesth 87:827–833. https://doi.org/10.1093/bja/87.6.827
Zhang Q, Patwardhan AR, Knapp CF, Evans JM (2015) Cardiovascular and cardiorespiratory phase synchronization in normovolemic and hypovolemic humans. Eur J Appl Physiol 115:417–427. https://doi.org/10.1007/s00421-014-3017-4
Penzel T, Kantelhardt JW, Bartsch RP, Riedl M, Kraemer JF, Wessel N et al (2016) Modulations of heart rate, ECG, and cardio-respiratory coupling observed in polysomnography. Front Physiol 7:460. https://doi.org/10.3389/fphys.2016.00460
Kuhnhold A, Schumann AY, Bartsch RP, Ubrich R, Barthel P, Schmidt G et al (2017) Quantifying cardio-respiratory phase synchronization-a comparison of five methods using ECGs of post-infarction patients. Physiol Meas 38:925–939. https://doi.org/10.1088/1361-6579/aa5dd3
Lotrič MB, Stefanovska A (2000) Synchronization and modulation in the human cardiorespiratory system. Physica A 283:451–461. https://doi.org/10.1016/s0378-4371(00)00204-1
Funding
Intramural source only.
Author information
Authors and Affiliations
Contributions
Conceptualization: TF and RC; data curation: CM, TF, and AP; formal analysis: CM and AP; investigation: DO, TM, AC, and RR; methodology: AP and RC; project administration: EC and RC; resources: EC and RC; software: CM and AP; supervision: AP and RC; validation: BC and AP; visualization: AC and RR; writing original draft: DO; writing—review and editing: BC, AP, and RC.
Corresponding author
Ethics declarations
Conflict of interests
The authors declare no competing interests.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ottolina, D., Cairo, B., Fossali, T. et al. Cardiorespiratory coupling in mechanically ventilated patients studied via synchrogram analysis. Med Biol Eng Comput 61, 1329–1341 (2023). https://doi.org/10.1007/s11517-023-02784-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-023-02784-4