Skip to main content

Advertisement

Log in

Cardiorespiratory coupling in mechanically ventilated patients studied via synchrogram analysis

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Respiration and cardiac activity are strictly interconnected with reciprocal influences. They act as weakly coupled oscillators showing varying degrees of phase synchronization and their interactions are affected by mechanical ventilation. The study aims at differentiating the impact of three ventilatory modes on the cardiorespiratory phase coupling in critically ill patients. The coupling between respiration and heartbeat was studied through cardiorespiratory phase synchronization analysis carried out via synchrogram during pressure control ventilation (PCV), pressure support ventilation (PSV), and neurally adjusted ventilatory assist (NAVA) in critically ill patients. Twenty patients were studied under all the three ventilatory modes. Cardiorespiratory phase synchronization changed significantly across ventilatory modes. The highest synchronization degree was found during PCV session, while the lowest one with NAVA. The percentage of all epochs featuring synchronization regardless of the phase locking ratio was higher with PCV (median: 33.9%, first–third quartile: 21.3–39.3) than PSV (median: 15.7%; first–third quartile: 10.9–27.8) and NAVA (median: 3.7%; first–third quartile: 3.3–19.2). PCV induces a significant amount of cardiorespiratory phase synchronization in critically ill mechanically ventilated patients. Synchronization induced by patient-driven ventilatory modes was weaker, reaching the minimum with NAVA. Findings can be explained as a result of the more regular and powerful solicitation of the cardiorespiratory system induced by PCV.

Graphical Abstract

The degree of phase synchronization between cardiac and respiratory activities in mechanically ventilated humans depends on the ventilatory mode

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Elstad M, O’Callaghan EL, Smith AJ, Ben-Tal A, Ramchandra R (2018) Cardiorespiratory interactions in humans and animals: rhythms for life. Am J Physiol 315:H6–H17. https://doi.org/10.1152/ajpheart.00701.2017

    Article  CAS  Google Scholar 

  2. Hess A, Yu L, Klein I, De Mazancourt M, Jebrak G, Mal H et al (2013) Neural mechanisms underlying breathing complexity. PLoS One 8:e75740. https://doi.org/10.1371/journal.pone.0075740

  3. Eckberg DL, Kifle YT, Roberts VL (1980) Phase relationship between normal human respiration and baroreflex responsiveness. J Physiol 304:489–502. https://doi.org/10.1113/jphysiol.1980.sp013338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berntson GG, Cacioppo JT, Quigley KS (1993) Respiratory sinus arrhythmia: autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology 30:183–196. https://doi.org/10.1111/j.1469-8986.1993.tb01731.x

    Article  CAS  PubMed  Google Scholar 

  5. Yasuma F, Hayano J (2004) Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm? Chest 125:683–690. https://doi.org/10.1378/chest.125.2.683

    Article  PubMed  Google Scholar 

  6. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065

    Article  Google Scholar 

  7. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P et al (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 59:178–193. https://doi.org/10.1161/01.res.59.2.178

    Article  CAS  PubMed  Google Scholar 

  8. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222. https://doi.org/10.1126/science.6166045

    Article  CAS  PubMed  Google Scholar 

  9. Hopf HB, Skyschally A, Heusch G, Peters J (1995) Low-frequency spectral power of heart rate variability is not a specific marker of cardiac sympathetic modulation. Anesthesiology 82:609–619. https://doi.org/10.1097/00000542-199503000-00002

    Article  CAS  PubMed  Google Scholar 

  10. Goldsmith RL, Bigger JT, Steinman RC, Fleiss JL (1992) Comparison of 24-hour parasympathetic activity in endurance-trained and untrained young men. J Am Coll Cardiol 20:552–558. https://doi.org/10.1016/0735-1097(92)90007-a

    Article  CAS  PubMed  Google Scholar 

  11. Cook JR, Bigger JT, Kleiger RE, Fleiss JL, Steinman RC, Rolnitzky LM (1991) Effect of atenolol and diltiazem on heart period variability in normal persons. J Am Coll Cardiol 17:480–484. https://doi.org/10.1016/s0735-1097(10)80119-6

    Article  CAS  PubMed  Google Scholar 

  12. Galletly DC, Larsen PD (1998) Relationship between cardioventilatory coupling and respiratory sinus arrhythmia. Br J Anaesth 80:164–168. https://doi.org/10.1093/bja/80.2.164

    Article  CAS  PubMed  Google Scholar 

  13. Larsen PD, Tzeng YC, Sin PY, Galletly DC (2010) Respiratory sinus arrhythmia in conscious humans during spontaneous respiration. Respir Physiol Neurobiol 174:111–118. https://doi.org/10.1016/j.resp.2010.04.021

    Article  CAS  PubMed  Google Scholar 

  14. Stefanovska A, Haken H, McClintock PV, Hozic M, Bajrovic F, Ribaric S (2000) Reversible transitions between synchronization states of the cardiorespiratory system. Phys Rev Lett 85:4831–4834. https://doi.org/10.1103/PhysRevLett.85.4831

    Article  CAS  PubMed  Google Scholar 

  15. Sola-Soler J, Giraldo BF, Fiz JA, Jane R (2015) Cardiorespiratory phase synchronization in OSA subjects during wake and sleep states. Proc Ann Int Conf IEEE Eng Med Biol Soc IEEE 2015:7708–7711. https://doi.org/10.1109/EMBC.2015.7320178

    Article  Google Scholar 

  16. Prokhorov MD, Ponomarenko VI, Gridnev VI, Bodrov MB, Bespyatov AB (2003) Synchronization between main rhythmic processes in the human cardiovascular system. Phys Rev E 68:041913 https://doi.org/10.1103/PhysRevE.68.041913

  17. Wu SD, Lo PC (2010) Cardiorespiratory phase synchronization during normal rest and inward-attention meditation. Int J Cardiol 141:325–328. https://doi.org/10.1016/j.ijcard.2008.11.137

    Article  PubMed  Google Scholar 

  18. Bartsch R, Kantelhardt JW, Penzel T, Havlin S (2007) Experimental evidence for phase synchronization transitions in the human cardiorespiratory system. Phys Rev Lett 98:054102. https://doi.org/10.1103/PhysRevLett.98.054102

  19. Mazzucco CE, Marchi A, Bari V, De Maria B, Guzzetti S, Raimondi F et al (2017) Mechanical ventilatory modes and cardioventilatory phase synchronization in acute respiratory failure patients. Physiol Meas. https://doi.org/10.1088/1361-6579/aa56ae

    Article  PubMed  Google Scholar 

  20. Cairo B, de Abreu RM, Bari V, Gelpi F, De Maria B, Rehder-Santos P et al (2021) Optimizing phase variability threshold for automated synchrogram analysis of cardiorespiratory interactions in amateur cyclists. Phil Trans R Soc A 379:20200251. https://doi.org/10.1098/rsta.2020.0251

    Article  PubMed  Google Scholar 

  21. Schafer C, Rosenblum MG, Kurths J, Abel HH (1998) Heartbeat synchronized with ventilation. Nature 392:239–240. https://doi.org/10.1038/32567

    Article  CAS  PubMed  Google Scholar 

  22. Pikovsky A, Zaks M, Rosenblum M, Osipov G, Kurths J (1997) Phase synchronization of chaotic oscillations in terms of periodic orbits. Chaos 7:680–687. https://doi.org/10.1063/1.166265

    Article  CAS  PubMed  Google Scholar 

  23. Beda A, Guldner A, Simpson DM, Carvalho NC, Franke S, Uhlig C et al (2012) Effects of assisted and variable mechanical ventilation on cardiorespiratory interactions in anesthetized pigs. Physiol Meas 33:503–519. https://doi.org/10.1088/0967-3334/33/3/503

    Article  PubMed  Google Scholar 

  24. Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S et al (1999) Neural control of mechanical ventilation in respiratory failure. Nat Med 5:1433–1436. https://doi.org/10.1038/71012

    Article  CAS  PubMed  Google Scholar 

  25. Schmidt M, Demoule A, Cracco C, Gharbi A, Fiamma MN, Straus C et al (2010) Neurally adjusted ventilatory assist increases respiratory variability and complexity in acute respiratory failure. Anesthesiology 112:670–681. https://doi.org/10.1097/ALN.0b013e3181cea375

    Article  PubMed  Google Scholar 

  26. Schmidt M, Kindler F, Cecchini J, Poitou T, Morawiec E, Persichini R et al (2015) Neurally adjusted ventilatory assist and proportional assist ventilation both improve patient-ventilator interaction. Crit Care 19:56. https://doi.org/10.1186/s13054-015-0763-6

    Article  PubMed  PubMed Central  Google Scholar 

  27. Barwing J, Ambold M, Linden N, Quintel M, Moerer O (2009) Evaluation of the catheter positioning for neurally adjusted ventilatory assist. Intensive Care Med. 35:1809–1814. https://doi.org/10.1007/s00134-009-1587-0

    Article  PubMed  PubMed Central  Google Scholar 

  28. Porta A, Baselli G, Lombardi F, Cerutti S, Antolini R, Del Greco M et al (1998) Performance assessment of standard algorithms for dynamic R-T interval measurement: comparison between R-Tapex and R-T(end) approach. Med Biol Eng Comput 36:35–42. https://doi.org/10.1007/bf02522855

    Article  CAS  PubMed  Google Scholar 

  29. Schafer C, Rosenblum MG, Abel HH, Kurths J (1999) Synchronization in the human cardiorespiratory system. Phys Rev E 60:857–870. https://doi.org/10.1103/physreve.60.857

    Article  CAS  Google Scholar 

  30. Moser M, Lehofer M, Hildebrandt G, Voica M, Egner S, Kenner T (2008) Phase- and frequency coordination of cardiac and respiratory function. Biol Rhythm Res 26:100–111. https://doi.org/10.1080/09291019509360328

    Article  Google Scholar 

  31. Bettermann H, Cysarz D, Van Leeuwen P (2002) Comparison of two different approaches in the detection of intermittent cardiorespiratory coordination during night sleep. BMC Physiol 2:18. https://doi.org/10.1186/1472-6793-2-18

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bartsch RP, Schumann AY, Kantelhardt JW, Penzel T, Ivanov P (2012) Phase transitions in physiologic coupling. Proc Natl Acad Sci USA 109:10181–10186. https://doi.org/10.1073/pnas.1204568109

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cysarz D, Bettermann H, Lange S, Geue D, van Leeuwen P (2004) A quantitative comparison of different methods to detect cardiorespiratory coordination during night-time sleep. Biomed Eng Online 3:44. https://doi.org/10.1186/1475-925X-3-44

    Article  PubMed  PubMed Central  Google Scholar 

  34. Masè M, Glass L, Disertori M, Ravelli F (2013) The AV synchrogram: a novel approach to quantify atrioventricular coupling during atrial arrhythmias. Biomed Signal Process Control 8:1008–1016. https://doi.org/10.1016/j.bspc.2013.01.004

    Article  Google Scholar 

  35. Iatsenko D, Bernjak A, Stankovski T, Shiogai Y, Owen-Lynch PJ, Clarkson PB et al (2013) Evolution of cardiorespiratory interactions with age. Phil Tran R Soc A 371:20110622. https://doi.org/10.1098/rsta.2011.0622

    Article  CAS  Google Scholar 

  36. Nguyen CD, Wilson SJ, Crozier S (2012) Automated quantification of the synchrogram by recurrence plot analysis. IEEE Trans Biomed Eng 59:946–955. https://doi.org/10.1109/TBME.2011.2179937

    Article  PubMed  Google Scholar 

  37. Marshall JC (2000) Complexity, chaos, and incomprehensibility: parsing the biology of critical illness. Crit Care Med 28:2646–2648. https://doi.org/10.1097/00003246-200007000-00080

    Article  CAS  PubMed  Google Scholar 

  38. Goldberger AL (2001) Heartbeats, hormones, and health: is variability the spice of life? Am J Respir Crit Care Med 163:1289–1290. https://doi.org/10.1164/ajrccm.163.6.ed1801a

    Article  CAS  PubMed  Google Scholar 

  39. Goldberger AL (2006) Giles F. Filley lecture. Complex systems. Proc Am Thorac Soc 3:467–471. https://doi.org/10.1513/pats.200603-028MS

    Article  PubMed  PubMed Central  Google Scholar 

  40. Goldberger AL (1992) Applications of chaos to physiology and medicine. In: Kim JH, Stringer J (eds), Applied Chaos. John Wiley & Sons, New York

  41. Buchman TG, Stein PK, Goldstein B (2002) Heart rate variability in critical illness and critical care. Curr Opin Crit Care 8:311–315. https://doi.org/10.1097/00075198-200208000-00007

    Article  PubMed  Google Scholar 

  42. Mazzeo AT, La Monaca E, Di Leo R, Vita G, Santamaria LB (2011) Heart rate variability: a diagnostic and prognostic tool in anesthesia and intensive care. Acta Anaesthesiol Scand 55:797–811. https://doi.org/10.1111/j.1399-6576.2011.02466.x

    Article  PubMed  Google Scholar 

  43. Goldstein B, Fiser DH, Kelly MM, Mickelsen D, Ruttimann U, Pollack MM (1998) Decomplexification in critical illness and injury: relationship between heart rate variability, severity of illness, and outcome. Crit Care Med 26:352–357. https://doi.org/10.1097/00003246-199802000-00040

    Article  CAS  PubMed  Google Scholar 

  44. Godin PJ, Buchman TG (1996) Uncoupling of biological oscillators: a complementary hypothesis concerning the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med 24:1107–1116. https://doi.org/10.1097/00003246-199607000-00008

    Article  CAS  PubMed  Google Scholar 

  45. Porta A, Di Rienzo M, Wessel N, Kurths J (2009) Addressing the complexity of cardiovascular regulation. Phil Trans R Soc A 367:1215–1218. https://doi.org/10.1098/rsta.2008.0292

    Article  PubMed  Google Scholar 

  46. Zhu Y, Hsieh YH, Dhingra RR, Dick TE, Jacono FJ, Galan RF (2013) Quantifying interactions between real oscillators with information theory and phase models: application to cardiorespiratory coupling. Phys Rev E 87:022709. https://doi.org/10.1103/PhysRevE.87.022709

  47. Dick TE, Hsieh YH, Dhingra RR, Baekey DM, Galan RF, Wehrwein E et al (2014) Cardiorespiratory coupling: common rhythms in cardiac, sympathetic, and respiratory activities. Prog Brain Res 209:191–205. https://doi.org/10.1016/B978-0-444-63274-6.00010-2

    Article  PubMed  PubMed Central  Google Scholar 

  48. Suki B, Alencar AM, Sujeer MK, Lutchen KR, Collins JJ, Andrade JS Jr et al (1998) Life-support system benefits from noise. Nature 393:127–128. https://doi.org/10.1038/30127

    Article  CAS  PubMed  Google Scholar 

  49. Mutch WA, Harms S, Lefevre GR, Graham MR, Girling LG, Kowalski SE (2000) Biologically variable ventilation increases arterial oxygenation over that seen with positive end-expiratory pressure alone in a porcine model of acute respiratory distress syndrome. Crit Care Med 28:2457–2464. https://doi.org/10.1097/00003246-200007000-00045

    Article  CAS  PubMed  Google Scholar 

  50. Mutch WA, Harms S, Ruth Graham M, Kowalski SE, Girling LG, Lefevre GR (2000) Biologically variable or naturally noisy mechanical ventilation recruits atelectatic lung. Am J Respir Crit Care Med 162:319–323. https://doi.org/10.1164/ajrccm.162.1.9903120

    Article  CAS  PubMed  Google Scholar 

  51. Suki B (2002) Fluctuations and power laws in pulmonary physiology. Am J Respir Crit Care Med 166:133–137. https://doi.org/10.1164/rccm.200202-152pp

    Article  PubMed  Google Scholar 

  52. Martins de Abreu R, Catai AM, Cairo B, Rehder-Santos P, Donisete da Silva C, De Favari Signini E, Sakaguchi CA, Porta A (2020) A transfer entropy approach for the assessment of the impact of inspiratory muscle training on the cardiorespiratory coupling of amateur cyclists. Front Physiol 11:134. https://doi.org/10.3389/fphys.2020.00134

    Article  Google Scholar 

  53. Dick TE, Morris KF (2004) Quantitative analysis of cardiovascular modulation in respiratory neural activity. J Physiol 556:959–970. https://doi.org/10.1113/jphysiol.2003.060418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bartsch RP, Liu KK, Ma QD, Ivanov PC (2014) Three independent forms of cardio-respiratory coupling: transitions across sleep stages. Comput Cardiol 41:781–784

    Google Scholar 

  55. Wu MC, Hu CK (2006) Empirical mode decomposition and synchrogram approach to cardiorespiratory synchronization. Phys Rev E 73:051917. https://doi.org/10.1103/PhysRevE.73.051917

  56. Porta A, Faes L (2013) Assessing causality in brain dynamics and cardiovascular control. Phil Trans R Soc A 371:20120517. https://doi.org/10.1098/rsta.2012.0517

    Article  PubMed  PubMed Central  Google Scholar 

  57. Galletly DC, Larsen PD (2001) Cardioventilatory coupling in heart rate variability: methods for qualitative and quantitative determination. Br J Anaesth 87:827–833. https://doi.org/10.1093/bja/87.6.827

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Q, Patwardhan AR, Knapp CF, Evans JM (2015) Cardiovascular and cardiorespiratory phase synchronization in normovolemic and hypovolemic humans. Eur J Appl Physiol 115:417–427. https://doi.org/10.1007/s00421-014-3017-4

    Article  PubMed  Google Scholar 

  59. Penzel T, Kantelhardt JW, Bartsch RP, Riedl M, Kraemer JF, Wessel N et al (2016) Modulations of heart rate, ECG, and cardio-respiratory coupling observed in polysomnography. Front Physiol 7:460. https://doi.org/10.3389/fphys.2016.00460

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kuhnhold A, Schumann AY, Bartsch RP, Ubrich R, Barthel P, Schmidt G et al (2017) Quantifying cardio-respiratory phase synchronization-a comparison of five methods using ECGs of post-infarction patients. Physiol Meas 38:925–939. https://doi.org/10.1088/1361-6579/aa5dd3

    Article  PubMed  Google Scholar 

  61. Lotrič MB, Stefanovska A (2000) Synchronization and modulation in the human cardiorespiratory system. Physica A 283:451–461. https://doi.org/10.1016/s0378-4371(00)00204-1

    Article  Google Scholar 

Download references

Funding

Intramural source only.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: TF and RC; data curation: CM, TF, and AP; formal analysis: CM and AP; investigation: DO, TM, AC, and RR; methodology: AP and RC; project administration: EC and RC; resources: EC and RC; software: CM and AP; supervision: AP and RC; validation: BC and AP; visualization: AC and RR; writing original draft: DO; writing—review and editing: BC, AP, and RC.

Corresponding author

Correspondence to Riccardo Colombo.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ottolina, D., Cairo, B., Fossali, T. et al. Cardiorespiratory coupling in mechanically ventilated patients studied via synchrogram analysis. Med Biol Eng Comput 61, 1329–1341 (2023). https://doi.org/10.1007/s11517-023-02784-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02784-4

Keywords