Skip to main content
Log in

An automated segmentation of coronary artery calcification using deep learning in specific region limitation

  • Original article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Coronary artery calcification (CAC) is a frequent disease of the arteries that supply the surface of the heart muscle. Leaving a severe disease untreated can make it permanent. Computer tomography (CT), which is well known for its ability to quantify the Agatston score, is used to visualize high-resolution CACs. CAC segmentation is still an important topic. Our goal is to automatically segment CAC in a specific area and measure the Agatston score in 2D images. The heart region is limited using a threshold, unused structures are removed using 2D connectivity (muscle, lung, ribcage), the heart cavity is extracted using the convex hull of the lungs, and the CAC is then segmented in 2D using a convolutional neural network (U-Net models/SegNet-VGG16 with transfer learning). The Agatston score prediction is calculated for CAC quantification. The proposed strategy is tested through experiments, which yield encouraging outcomes.

Deep learning for CAC segmentation in CT images

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors declare that all data and materials used in this research support their published claims and comply with field standards.

Code availability

The data that support the findings of this study are available from orCaScore challenge.

References

  1. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15(4):827–832

    Article  CAS  PubMed  Google Scholar 

  2. Bui V, Hsu LY, Chang LC, Chen MY (2018) An automatic random walk based method for 3D segmentation of the heart in cardiac computed tomography images. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). IEEE, pp 1352–1355

  3. Cao W, Li J, Liu J, Zhang P (2016) Two improved segmentation algorithms for whole cardiac CT sequence images. In: 2016 9th international congress on image and signal processing, BioMedical engineering and informatics (CISP-BMEI). IEEE, pp 346–351

  4. Gogin N, Viti M, Nicodème L, Ohana M, Talbot H, Gencer U, Mekukosokeng M, Caramella T, Diascorn Y, Airaud JY et al (2021) Automatic coronary artery calcium scoring from unenhanced-ECG-gated CT using deep learning. Diagn Interv Imaging 102(11):683–690

    Article  PubMed  Google Scholar 

  5. Gupta V, Demirer M, Bigelow M, Little KJ, Candemir S, Prevedello LM, White RD, O’Donnell TP, Wels M, Erdal BS (2020) Performance of a deep neural network algorithm based on a small medical image dataset: incremental impact of 3D-to-2D reformation combined with novel data augmentation, photometric conversion, or transfer learning. J Digit Imaging 33(2):431–438

    Article  PubMed  Google Scholar 

  6. Henglin M, Stein G, Hushcha PV, Snoek J, Wiltschko AB, Cheng S (2017) Machine learning approaches in cardiovascular imaging. Circ Cardiovasc Imaging 10(10):e005,614

    Article  Google Scholar 

  7. Isgum I, van Ginneken B, Rutten A, Prokop M (2005) Automated coronary calcification detection and scoring. In: ISPA 2005. Proceedings of the 4th international symposium on image and signal processing and analysis, 2005. IEEE, pp 127–132

  8. Isgum I, Prokop M, Niemeijer M, Viergever MA, Van Ginneken B (2012) Automatic coronary calcium scoring in low-dose chest computed tomography. IEEE Trans Med Imaging 31(12):2322–2334

    Article  PubMed  Google Scholar 

  9. Išgum I, Rutten A, Prokop M, van Ginneken B (2007) Detection of coronary calcifications from computed tomography scans for automated risk assessment of coronary artery disease. Med Phys 34 (4):1450–1461

    Article  PubMed  Google Scholar 

  10. Izadpanahkakhk M, Razavi SM, Taghipour-Gorjikolaie M, Zahiri SH, Uncini A (2018) Deep region of interest and feature extraction models for palmprint verification using convolutional neural networks transfer learning. Appl Sci 8(7):1210

    Article  Google Scholar 

  11. Karimi D, Warfield SK, Gholipour A (2021) Transfer learning in medical image segmentation: New insights from analysis of the dynamics of model parameters and learned representations. Artif Intell Med 116 (102):078

    Google Scholar 

  12. Kurkure U, Chittajallu DR, Brunner G, Le YH, Kakadiaris IA (2010) A supervised classification-based method for coronary calcium detection in non-contrast CT. Int J Cardiovasc Imaging 26(7):817–828

    Article  PubMed  Google Scholar 

  13. Larrey-Ruiz J, Morales-Sánchez J, Bastida-Jumilla MC, Menchón-Lara RM, Verdú-Monedero R, Sancho-Gómez JL (2014) Automatic image-based segmentation of the heart from CT scans. EURASIP J Image Video Process 2014(1):1–13

    Article  Google Scholar 

  14. Lee JG, Kim H, Kang H, Koo HJ, Kang JW, Kim YH, Yang DH (2021) Fully automatic coronary calcium score software empowered by artificial intelligence technology: validation study using three CT cohorts. Korean J Radiol 22(11):1764

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lessmann N, van Ginneken B, Zreik M, de Jong PA, de Vos BD, Viergever MA, Išgum I (2017) Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions. IEEE Trans Med Imaging 37(2):615–625

    Article  Google Scholar 

  16. Litjens G, Ciompi F, Wolterink JM, de Vos BD, Leiner T, Teuwen J, Išgum I (2019) State-of-the-art deep learning in cardiovascular image analysis. J Am Coll Cardiol Img 12(8):1549–1565

    Article  Google Scholar 

  17. Organization WH, et al. (2019) World health statistics 2019: monitoring health for the SDGs sustainable development goals

  18. Rahman H, Rahman S, Din F (2017) Automatic segmentation of the aorta in cardiac medical images. Nucleus 54(2):90–96

    Google Scholar 

  19. Rajpar SA, Liu J, Tunio MZ (2018) Automated segmentation of whole cardiac CT images based on deep learning. Int J Adv Comput Sci Appl 9(4)

  20. Rim B, Lee S, Lee A, Gil HW, Hong M (2021) Semantic cardiac segmentation in chest CT images using K-means clustering and the mathematical morphology method. Sensors 21(8):2675

    Article  PubMed  PubMed Central  Google Scholar 

  21. Santini G, Della Latta D, Martini N, Valvano G, Gori A, Ripoli A, Susini CL, Landini L, Chiappino D (2017) An automatic deep learning approach for coronary artery calcium segmentation. In: EMBEC & NBC 2017. Springer, pp 374–377

  22. Shadmi R, Mazo V, Bregman-Amitai O, Elnekave E (2018) Fully-convolutional deep-learning based system for coronary calcium score prediction from non-contrast chest CT. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). IEEE, pp 24–28

  23. Siegersma K, Leiner T, Chew D, Appelman Y, Hofstra L, Verjans J (2019) Artificial intelligence in cardiovascular imaging: state of the art and implications for the imaging cardiologist. Neth Hear J 27(9):403–413

    Article  CAS  Google Scholar 

  24. Šprem J, De Vos BD, Lessmann N, Van Hamersvelt RW, Greuter MJ, De Jong PA, Leiner T, Viergever MA, Išgum I (2018) Coronary calcium scoring with partial volume correction in anthropomorphic thorax phantom and screening chest CT images. PloS ONE 13(12):e0209,318

    Article  Google Scholar 

  25. Wang W, Wang H, Chen Q, Zhou Z, Wang R, Zhang N, Chen Y, Sun Z, Xu L (2020) Coronary artery calcium score quantification using a deep-learning algorithm. Clin Radiol 75 (3):237–e11

    Article  Google Scholar 

  26. Wolterink JM, Leiner T, De Vos BD, Coatrieux JL, Kelm BM, Kondo S, Salgado RA, Shahzad R, Shu H, Snoeren M et al (2016) An evaluation of automatic coronary artery calcium scoring methods with cardiac CT using the orcascore framework. Med Phys 43(5):2361–2373

    Article  CAS  PubMed  Google Scholar 

  27. Wolterink JM, Leiner T, Takx RA, Viergever MA, Išgum I (2014) An automatic machine learning system for coronary calcium scoring in clinical non-contrast enhanced, ecg-triggered cardiac CT. In: Medical Imaging 2014: Computer-aided diagnosis, vol 9035. International Society for Optics and Photonics, p 90350E

  28. Wolterink JM, Leiner T, Takx RA, Viergever MA, Išgum I (2015) Automatic coronary calcium scoring in non-contrast-enhanced ECG-triggered cardiac CT with ambiguity detection. IEEE Trans Med Imaging 34(9):1867–1878

    Article  PubMed  Google Scholar 

  29. Wolterink JM, Leiner T, de Vos BD, van Hamersvelt RW, Viergever MA, Išgum I (2016) Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Image Anal 34:123–136

    Article  PubMed  Google Scholar 

  30. Wu J, Lewis E, Ferns G, Giles J (2009) Automated coronary calcium scoring using predictive active contour segmentation. In: 2009 IEEE nuclear science symposium conference record (NSS/MIC). IEEE, pp 3970–3974

  31. Xie Y, Cham MD, Henschke C, Yankelevitz D, Reeves AP (2014) Automated coronary artery calcification detection on low-dose chest CT images. In: Medical Imaging 2014: Computer-aided diagnosis, vol 9035. International Society for Optics and Photonics, p 90350F

  32. Xie Y, Liu S, Miller A, Miller JA, Markowitz S, Akhund A, Reeves AP (2017) Coronary artery calcification identification and labeling in low-dose chest CT images. In: Medical Imaging 2017: Computer-aided diagnosis, vol 10134. International Society for Optics and Photonics, p 101340L

  33. Yan S, Shi F, Chen Y, Dey D, Lee SE, Chang HJ, Li D, Xie Y (2018) Calcium removal from cardiac CT images using deep convolutional neural network. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). IEEE, pp 466–469

  34. Yang G, Chen Y, Sun Q, Ning X, Shu H, Coatrieux JL (2016) Fully automatic coronary calcification detection in non-contrast CT images. Med Phys 43(5):2174–186

    Article  CAS  PubMed  Google Scholar 

  35. Yaşar H., Serhatlıoğlu S, Kutbay U, Hardalaç F (2018) A novel approach for estimation of coronary artery calcium score class using ann and body mass index, age and gender data. In: 2018 4th international conference on computer and technology applications (ICCTA). IEEE, pp 184–187

  36. Zair AM, Bouzouad Cherfa A, Cherfa Y, Belkhamsa N (2022) Machine learning for coronary artery calcification detection and labeling using only native computer tomography. Phys Eng Sci Med 45 (1):49–61

    Article  PubMed  Google Scholar 

  37. Zreik M, van Hamersvelt RW, Wolterink JM, Leiner T, Viergever MA, Išgum I (2018) Automatic detection and characterization of coronary artery plaque and stenosis using a recurrent convolutional neural network in coronary CT angiography. arXiv:1804.04360

  38. Zreik M, van Hamersvelt RW, Wolterink JM, Leiner T, Viergever MA, Išgum I (2018) A recurrent CNN for automatic detection and classification of coronary artery plaque and stenosis in coronary CT angiography. IEEE Trans Med Imaging 38(7):1588–1598

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AMZ did data collection. AMZ implemented the model and analyzed data. AMZ wrote the manuscript with critical input from AC, YC and NB. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Asmae Mama Zair.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zair, A.M., Bouzouad Cherfa, A., Cherfa, Y. et al. An automated segmentation of coronary artery calcification using deep learning in specific region limitation. Med Biol Eng Comput 61, 1687–1696 (2023). https://doi.org/10.1007/s11517-023-02797-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02797-z

Keywords

Navigation