Abstract
3D vessel extraction has great significance in the diagnosis of vascular diseases. However, accurate extraction of vessels from computed tomography angiography (CTA) data is challenging. For one thing, vessels in different body parts have a wide range of scales and large curvatures; for another, the intensity distributions of vessels in different CTA data vary considerably. Besides, surrounding interfering tissue, like bones or veins with similar intensity, also seriously affects vessel extraction. Considering all the above imaging and structural features of vessels, we propose a new scale-adaptive hybrid parametric tracker (SAHPT) to extract arbitrary vessels of different body parts. First, a geometry-intensity parametric model is constructed to calculate the geometry-intensity response. While geometry parameters are calculated to adapt to the variation in scale, intensity parameters can also be estimated to meet non-uniform intensity distributions. Then, a gradient parametric model is proposed to calculate the gradient response based on a multiscale symmetric normalized gradient filter which can effectively separate the target vessel from surrounding interfering tissue. Last, a hybrid parametric model that combines the geometry-intensity and gradient parametric models is constructed to evaluate how well it fits a local image patch. In the extraction process, a multipath spherical sampling strategy is used to solve the problem of anatomical complexity. We have conducted many quantitative experiments using the synthetic and clinical CTA data, asserting its superior performance compared to traditional or deep learning-based baselines.
Graphical abstract














Similar content being viewed by others
References
Moccia S, De Momi E, El Hadji S, Mattos LS (2018) Blood vessel segmentation algorithms – review of methods, datasets and evaluation metric. Comput Meth Prog Biomed 158:71–79. https://doi.org/10.1016/j.cmpb.2018.02.001
Lesage D, Angelini ED, Bloch I, Funka-Lea G (2009) A review of 3d vessel lumen segmentation techniques: Models, features and extraction schemes. Med Image Anal 13:819–845. https://doi.org/10.1016/j.media.2009.07.011
Sato Y, Nakajima S, Shiraga N, Atsumi H, Yoshida S, Koller T, Gerig G, Kikinis R (1998) Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med Image Anal 2:143–168. https://doi.org/10.1016/S1361-8415(98)80009-1
Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: Proc Int Conf Med Image Comput-Assist Intervent, pp 130–137
Olabarriaga SD, Breeuwer M, Niessen WJ (2003) Evaluation of hessian-based filters to enhance the axis of coronary arteries in ct images. In: Proc 17th Int Congr Exhib, pp 1191–1196. https://doi.org/10.1016/S0531-5131(03)00307-8
Orowski P, Orkisz M (2009) Efficient computation of hessian-based enhancement filters for tubular structures in 3d images. Innovation and Research in BioMed Eng 30:128–132. https://doi.org/10.1016/j.irbm.2009.04.003
Manniesing R, Velthuis BK, van Leeuwen MS, van der Schaaf IC, van Laar PJ, Niessen WJ (2006) Level set based cerebral vasculature segmentation and diameter quantification in ct angiography. Med Image Anal 10:200–214. https://doi.org/10.1016/j.media.2005.09.001
Krissian K (2002) Flux-based anisotropic diffusion applied to enhancement of 3-d angiograms. IEEE Trans Med Imag 21:1440–1442. https://doi.org/10.1109/TMI.2002.806403
Law MWK, Chung ACS (2008) Three dimensional curvilinear structure detection using optimally oriented flux. In: Proc Eur Conf Comput Vision, pp 368–382
Lesage D, Angelini ED, Bloch I, FunkaLea G (2009) Design and study of flux-based features for 3d vascular tracking. In: Proc IEEE Int Symp Biomed Imaging, p 286–289. https://doi.org/10.1109/ISBI.2009.5193040
Kass M, Witkin A, Terzopoulos D (1988) Snakes: Active contour models. Int J Comput Vision 1:321–331. https://doi.org/10.1007/BF00133570
Brigger P, Hoeg J, Unser M (2000) B-spline snakes: a flexible tool for parametric contour detection. Trans Image Process 9:1484–1496. https://doi.org/10.1109/83.862624
Nain D, Yezzi AJ, Turk G (2004) Vessel segmentation using a shape driven flow. In: Proc Int Conf Med Image Comput-Assist Intervent, pp 51–59
Cruz AL, Straka M, Kochl A, Sramek M, Fleischmann D (2004) Nonlinear model fitting to parameterize diseased blood vessels. In: Proc IEEE Visulization, pp 393–400. https://doi.org/10.1109/VISUAL.2004.72
Lee SH, Lee S (2015) Adaptive kalman snake for semi-autonomous 3d vessel tracking. Comput Methods Programs Biomed 122:56–75. https://doi.org/10.1016/j.cmpb.2015.06.008
Wong WCK, Chung ACS (2017) Probabilistic vessel axis tracing and its application to vessel segmentation with stream surfaces and minimum cost paths. Med Image Anal 11:567–587. https://doi.org/10.1016/j.media.2007.05.003
Wörz S, Rohr K (2007) Segmentation and quantification of human vessels using a 3-d cylindrical intensity model. IEEE Trans Image Process 16:1994–2004. https://doi.org/10.1109/TIP.2007.901204
Tyrrell JA, Tomaso Ed, D F, Tong R, Kozak K, Jain RK, Roysam B (2007) Robust 3-d modeling of vasculature imagery using superellipsoids. IEEE Trans Med Imag 26:223–237. https://doi.org/10.1109/TMI.2006.889722
Lee J, Beighley P, Ritman E, Smith N (2007) Automatic segmentation of 3d micro-ct coronary vascular images. Med Image Anal 11:630–647. https://doi.org/10.1016/j.media.2007.06.012
Schaap M, Smal I, Metz C, van Walsum T, Niessen W (2007) Bayesian tracking of elongated structures in 3d images. In: Proc Inf Process Med Imaging, pp 74–85
Friman O, Hindennach M, Kühnel C, Peitgen HO (2010) Multiple hypothesis template tracking of small 3d vessel structures. Med Image Anal 14:160–171. https://doi.org/10.1016/j.media.2009.12.003
Xu C, Pham D, Prince J (2000) Image segmentation using deformable models. Handbool of Mecial Imaging 2:129–174. https://doi.org/10.1117/3.831079.ch3
Li H, Yezzi AJ (2007) Vessels as 4-d curves: Global minimal 4-d paths to extract 3-d tubular surfaces and centerlines. IEEE Trans Med Imag 26:1213–1223. https://doi.org/10.1109/tmi.2007.903696
Benmansour F, Cohen LD (2009) Tubular anisotropy for 3d vessels segmentation. In: Proc IEEE Conf Comput Vis Pattern Recognit, pp 2286–2293. https://doi.org/10.1109/CVPR.2009.5206703
Litjens G, Kooi T, Bejnordi B, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez C (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88
Milletari F, Navab N, Ahmadi SA (2016) V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: Proc 4th Int Conf 3D Vis, pp 565–571
Çiçek O, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3d u-net: Learning dense volumetric segmentation from sparse annotation. In: Proc Int Conf Med Image Comput-Assist Intervent, p 424–432
Yan Z, Yang X, Cheng KT (2016) Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Trans Biomed Eng 65:1912–1923. https://doi.org/10.1109/TBME.2018.2828137
Kleesiek J, Urban G, Hubert A, Schwarz D, Maier-Hein K, Bendszus M, Biller A (2016) Deep mri brain extraction: A 3d convolutional neural network for skull stripping. Neuroimage 129:460–469. https://doi.org/10.1016/j.neuroimage.2016.01.024
Charbonnier JP, van Rikxoort EM, Setio AAA, Schaefer-Prokop CM, van Ginneken B, Ciompi F (2017) Improving airway segmentation in computed tomography using leak detection with convolutional networks. Med Image Anal 36:52–60. https://doi.org/10.1016/j.media.2016.11.001
Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in mri images. IEEE Trans Med Imag 35:1240–1251. https://doi.org/10.1109/TMI.2016.2538465
Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Med Image Anal 36:61–78
Oda M, Roth HR, Kitasaka T, Misawa K, Fujiwara M, Mori K (2019) Abdominal artery segmentation method from ct volumes using fully convolutional neural network. Int J Comput Assist Radiol Surg 14:2069–2081. https://doi.org/10.1007/s11548-019-02062-5
Wolterink JM, van Hamersvelt RW, Viergever MA, Leiner T, Išgum I (2019) Coronary artery centerline extraction in cardiac ct angiography using a cnn-based orientation classifier. Med Image Anal 51:46–60. https://doi.org/10.1016/j.media.2018.10.005
Fu F, Wei J, Zhang M, Yu F, Xiao Y, Rong D, Shan Y, Li Y, Zhao C, Liao F, Yang Z, Li Y, Chen Y, Wang X, Lu J (2020) Rapid vessel segmentation and reconstruction of head and neck angiograms using 3d convolutional neural network. Nat Commun 11. https://doi.org/10.1038/s41467-020-18606-2
He JP, Y C, Can Z MW, Z Y, Y X, Yizhou (2020) Learning hybrid representations for automatic 3d vessel centerline extraction. In: Proc Int Conf Med Image Comput-Assist Intervent, pp 24–34
Bruno P, Zaffino P, Scaramuzzino S, De Rosa S, Indolfi C, Calimeri F, Spadea M, Ghidini C, Magnini B, Passerini A, Traverso P (2018) Using cnns for designing and implementing an automatic vascular segmentation method of biomedical images. In: AI*IA 2018 – Advances in Artificial Intelligence, pp 60–70. https://doi.org/10.1007/978-3-030-03840-3_5
Bruno P, Spadea M, Scaramuzzino S, De Rosa S, Indolfi C, Gargiulo G, Giugliano G, Esposito G, Calimeri F, Zaffino P (2022) Assessing vascular complexity of paod patients by deep learning-based segmentation and fractal dimension. Neural Comput Applic 34:22015–22022. https://doi.org/10.1007/s00521-022-07642-2
Florin C, Paragios N, Williams J (2005) A quasi-monte carlo solution for segmentation of coronaries. In: Proc Int Conf Med Image Comput-Assist Intervent, pp 246–253
Krissian K, Wu X, Luboz V (2006) Smooth vasculature reconstruction with circular and elliptic cross sections. In: Proc Int Medicine Meets Virtual Reality Conference
Shim H, Kwon D, Yun I, Lee S (2006) Robust segmentation of cerebral arterial segments by a sequential monte carlo method: particle filtering. Comput Methods and Programs in Biomedicine 84:135–145
La Cruz A, Straka M, Köchl A, Srámek E M nad Gröller, Fleischmann D (2005) Nonlinear model fitting to parameterize diseased blood vessels. In: Proc Int Conf IEEE Visualization, pp 393–400
Gill P, Murray W (1978) Algorithms for the solution of the nonlinear least-squares problem. SIAM Journal on Numerical Analysis 15:977–992
Egger J, Tokuda J, Chauvin L, Freisleben B, Nimsky C, Kapur T, Wells W (2012) Integration of the openigtlink network protocol for image-guided therapy with the medical platform mevislab. Int J Med Robot 8:282–290
Boykov YY, Jolly MP (2001) Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images. In: Proc IEEE Int Conf Comput Vis, pp 105–112
Zheng Y, Tek H, Funka-Lea (2013) Robust and accurate coronary artery centerline extraction in cta by combining model-driven and data-driven approaches. In: Proc Int Conf Med Image Comput-Assist Intervent, pp 74–81
Schaap M, Metz CT, van Walsum T, van der Giessen AG, Weustink AC, Mollet NR et al (2009) Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Med Image Anal 13:701–714
Acknowledgements
The work was supported by the National Natural Science Foundation of China (Grant No. 61971118).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sun, Q., Yang, J., Ma, S. et al. 3D vessel extraction using a scale-adaptive hybrid parametric tracker. Med Biol Eng Comput 61, 2467–2480 (2023). https://doi.org/10.1007/s11517-023-02815-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-023-02815-0