Skip to main content

Advertisement

Log in

Review of microwave imaging algorithms for stroke detection

  • Review Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Microwave imaging is one of the rapidly developing frontier disciplines in the field of modern medical imaging. The development of microwave imaging algorithms for reconstructing stroke images is discussed in this paper. Compared with traditional stroke detection and diagnosis techniques, microwave imaging has the advantages of low price and no ionizing radiation hazards. The research hotspots of microwave imaging algorithms in the field of stroke are mainly reflected in the design and improvement of microwave tomography, radar imaging, and deep learning imaging. However, the current research lacks the analysis and combing of microwave imaging algorithms. In this paper, the development of common microwave imaging algorithms is reviewed. The concept, research status, current research hotspots and difficulties, and future development trends of microwave imaging algorithms are systematically expounded.

Graphical Abstract

The microwave antenna is used to collect scattered signals, and a series of microwave imaging algorithms are used to reconstruct the stroke image. The classification diagram and flow chart of the algorithms are shown in this Figure. (The classification diagram and flow chart are based on the microwave imaging algorithms.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lindsay MP, Norrving B, Sacco RL et al (2019) World Stroke Organization (WSO): global stroke fact sheet 2019. Int J Stroke 14(8):806–817

    Article  PubMed  Google Scholar 

  2. Katan M, Luft A (2018) Global burden of stroke. Semin Neurol 38(2):208–211

    Article  PubMed  Google Scholar 

  3. Murphy SJ, Werring DJ (2020) Stroke: causes and clinical features. Medicine (Abingdon) 48(9):561–566

    PubMed  Google Scholar 

  4. Benjamin EJ, Muntner P, Alonso A et al (2019) Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139(10):e56–e528

    Article  PubMed  Google Scholar 

  5. Elameer M, Price CI, (2020) Neuroimaging methods for acute stroke diagnosis and treatment. In: Peplow, P.V., Martinez, B., Dambinova, S.A. (eds) Stroke biomarkers. Neuromethods 147: 297–333

  6. Ramamurthy K, Menaka R, Johnson A et al (2020) Neuroimaging and deep learning for brain stroke detection — a review of recent advancements and future prospects. Comput Methods Programs Biomed 197:105728

    Article  Google Scholar 

  7. Orel SG, Schnall MD (2001) MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology 220(1):13–30

    Article  CAS  PubMed  Google Scholar 

  8. Walsh KB (2019) Non-invasive sensor technology for prehospital stroke diagnosis: current status and future directions. Int J Stroke 14(6):592–602

    Article  PubMed  Google Scholar 

  9. Bevacqua MT, Bellizzi GG, Crocco L, et al. (2019) A method for quantitative imaging of electrical properties of human tissues from only amplitude electromagnetic data. Inverse Problems 35

  10. Semenov SY, Svenson RH, Posukh VG et al (2002) Dielectrical spectroscopy of canine myocardium during acute ischemia and hypoxia at frequency spectrum from 100 kHz to 6 GHz. IEEE Trans Med Imaging 21(6):703–707

    Article  PubMed  Google Scholar 

  11. Hopfer M, Planas R, Hamidipour A et al (2017) Electromagnetic tomography for detection, differentiation, and monitoring of brain stroke: a virtual data and human head phantom study. IEEE Antennas Propag Mag 59(5):86–97

    Article  Google Scholar 

  12. Pagliari DJ, Pulimeno A, Vacca M, et al. (2015) A low-cost, fast, and accurate microwave imaging system for breast cancer detection. 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS)

  13. Eesuola A, Chen Y, Tian GY (2011) Novel ultra-wideband directional antennas for microwave breast cancer detection. In: 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 90–93

  14. Qureshi AM, Mustansar Z (2017) Levels of detail analysis of microwave scattering from human head models for brain stroke detection. PeerJ 21(5):e4061

    Article  Google Scholar 

  15. Mobashsher AT, Bialkowski KS, Abbosh AM (2016) Design of compact cross-fed three-dimensional slot-loaded antenna and its application in wideband head imaging system. IEEE Antennas Wirel Propag Lett 15:1856–1860

    Article  Google Scholar 

  16. Chew KM, Yong CY, Sudirman R, et al. (2018) Bio-signal processing and 2D representation for brain tumor detection using microwave signal analysis. 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), 303–309

  17. Jamlos MA, Mustafa WA, (2019) Improved confocal microwave imaging algorithm for tumor detection

  18. Chaudhary SS, Mishra RK, Swarup A et al (1984) Dielectric properties of normal & malignant human breast tissues at radiowave & microwave frequencies. Indian J Biochem Biophys 21(1):76–79

    CAS  PubMed  Google Scholar 

  19. Halter RJ, Zhou T, Meaney PM et al (2009) The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience. Physiol Meas 30:S121–S136

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bindu GN, Abraham S, Lonappan A et al (2006) Active microwave imaging for breast cancer detection. Progress In Electromagnetics Res 58:149–169

    Article  Google Scholar 

  21. Aldhaeebi MA, Alzoubi K, Almoneef TS et al (2020) Review of microwaves techniques for breast cancer detection. Sensors (Basel) 20(8):E2390

    Article  Google Scholar 

  22. Mouty S, Bocquet B, Ringot R, et al. (2000) Microwave radiometric imaging (MWI) for the characterisation of breast tumours. Eur Phys J-appl Phys 10:73–78

  23. Wang X, Xin H, Bauer D, et al. (2011) Microwave induced thermal acoustic imaging modeling for potential breast cancer detection. In: 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 722–725

  24. Pichot C, Jofre L, Peronnet G et al (1985) Active microwave imaging of inhomogeneous bodies. IEEE Trans Antennas Propagat 33:416–425

    Article  Google Scholar 

  25. Meaney PM, Fanning MW, Li D et al (2000) A clinical prototype for active microwave imaging of the breast. IEEE Trans Microw Theory Tech 48:1841–1853

    Article  Google Scholar 

  26. Yago Ruiz Á, Cavagnaro M, Crocco L (2023) An effective framework for deep-learning-enhanced quantitative microwave imaging and its potential for medical applications. Sensors 23(2):643

    Article  PubMed  PubMed Central  Google Scholar 

  27. Semenov SY, Corfield DR (2008) Microwave tomography for brain imaging: feasibility assessment for stroke detection. Int J Antennas Propagation 2008:1–8

    Article  Google Scholar 

  28. Fear EC, Li X, Hagness SC et al (2002) Confocal microwave imaging for breast cancer detection: localization of tumors in three dimensions. IEEE Trans Biomed Eng 49(8):812–822

    Article  PubMed  Google Scholar 

  29. Ambrosanio M, Franceschini S, Baselice F, et al. (2020). Machine learning for microwave imaging. 2020 14th European Conference on Antennas and Propagation (EuCAP), 1–4

  30. Chew W (1998) Imaging and inverse problems in electromagnetics. Advances in computational electrodynamics: the finite-difference time-domain method; Artech House: Norwood. MA, USA, pp 653–702

    Google Scholar 

  31. Semenov SY, Seiser B, Stoegmann E, et al. (2014). Electromagnetic tomography for brain imaging: from virtual to human brain. 2014 IEEE Conference on Antenna Measurements & Applications (CAMA), 1–4

  32. Mackay DJC. (1998). Introduction to Monte Carlo methods. In: Jordan, M.I. (eds) Learning in graphical models. NATO ASI Series, Springer, Dordrecht 89:175–204

  33. Ambrosanio M, Franceschini S, Pascazio V, et al. (2021). Microwave breast imaging via neural networks for almost real-time applications

  34. Holland JH (1975) Adaptation in natural and artificial systems 6(2):126–137

    Google Scholar 

  35. Hwang CR (1988) Simulated annealing: theory and applications. Acta Appl Math 12:108–111

    Article  Google Scholar 

  36. Meza JC. (2010) Steepest descent. Wiley Interdisciplinary Reviews: Computational Statistics

  37. Bisio I, Fedeli A, Lavagetto F et al (2018) A numerical study concerning brain stroke detection by microwave imaging systems. Multimed Tools Appl 77(8):9341–9363

    Article  Google Scholar 

  38. Abubakar A, van den Berg P, Kooij B (2000) A conjugate gradient contrast source technique for 3D profile inversion. IEICE Trans Electron 83(12):1864–1874

    Google Scholar 

  39. Ireland D, Bialkowski K, Abbosh A (2013) Microwave imaging for brain stroke detection using Born iterative method. IET Microwaves Antennas Propag 7(11):909–915

    Article  Google Scholar 

  40. Gilmore C, Abubakar A, Hu W et al (2009) Microwave biomedical data inversion using the finite-difference contrast source inversion method. IEEE Trans Antennas Propag 57(5):1528–1538

    Article  Google Scholar 

  41. Ireland D, Bialkowski M (2010) Feasibility study on microwave stroke detection using a realistic phantom and the FDTD method. Asia-Pacific Microwave Conference Proceedings, APMC :1360–1363

  42. Zakaria A, Gilmore C, LoVetri J (2010) Finite-element contrast source inversion method for microwave imaging. Inverse Prob 26:115010–115021

    Article  Google Scholar 

  43. Scapaticci R, Tobon J, Bellizzi G et al (2018) Design and numerical characterization of a low-complexity microwave device for brain stroke monitoring. IEEE Trans Antennas Propag 66(12):7328–7338

    Article  Google Scholar 

  44. Merunka I, Massa A, Vrba D et al (2019) Microwave tomography system for methodical testing of human brain stroke detection approaches. Int J Antennas Propag 2019:e4074862

    Article  Google Scholar 

  45. Coli VL, Tournier PH, Dolean V et al (2019) Detection of simulated brain strokes using microwave tomography. IEEE J Electromagn RF Microw Med Biol 3(4):254–260

    Article  Google Scholar 

  46. Estatico C, Pastorino M, Randazzo A (2012) A novel microwave imaging approach based on regularization in L(p) Banach spaces. IEEE Trans Antennas Propag 60:3373–3381

    Article  Google Scholar 

  47. Bisio I, Estatico C, Fedeli A et al (2018) Brain stroke microwave imaging by means of a Newton-conjugate-gradient method in $L^{p}$ Banach spaces. IEEE Trans Microwave Theory Techn 66(8):3668–3682

    Article  Google Scholar 

  48. Estatico C, Fedeli A, Pastorino M et al (2015) A multifrequency inexact-Newton method in $L^p$ Banach spaces for buried objects detection. IEEE Trans Antennas Propag 63(9):4198–4204

    Article  Google Scholar 

  49. Estatico C, Fedeli A, Pastorino M et al (2018) Quantitative microwave imaging method in Lebesgue spaces with nonconstant exponents. IEEE Trans Antennas Propagat 66(12):7282–7294

    Article  Google Scholar 

  50. Estatico C, Fedeli A, Pastorino M et al (2020) A phaseless microwave imaging approach based on a Lebesgue-space inversion algorithm. IEEE Trans Antennas Propagat 68(12):8091–8103

    Article  Google Scholar 

  51. Bisio I, Estatico C, Fedeli A et al (2020) Variable-exponent Lebesgue-space inversion for brain stroke microwave imaging. IEEE Trans Microwave Theory Techn 68(5):1882–1895

    Article  Google Scholar 

  52. Fedeli A, Randazzo A, Sciarrone A et al (2020) A microwave diagnostic technique for early-stage brain stroke characterization. 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science. IEEE, Rome, pp 1–3

    Google Scholar 

  53. Fedeli A, Estatico C, Pastorino M et al (2020) Microwave detection of brain injuries by means of a hybrid imaging method. IEEE Open J Antennas and Propag 1:513–523

    Article  Google Scholar 

  54. Fedeli A, Schenone V, Randazzo A et al (2021) Nonlinear S-parameters inversion for stroke imaging. IEEE Trans Microwave Theory Techn 69(3):1760–1771

    Article  Google Scholar 

  55. Bisio I, Fedeli A, Garibotto C et al (2021) Two ways for early detection of a stroke through a wearable smart helmet: signal processing vs. electromagnetism. IEEE Wireless Commun 28(3):22–27

    Article  Google Scholar 

  56. Afsari A, Abbosh AM, Rahmat-Samii Y (2019) Modified born iterative method in medical electromagnetic tomography using magnetic field fluctuation contrast source operator. IEEE Trans Microw Theory Tech 67(1):454–463

    Article  Google Scholar 

  57. Vasquez J, Scapaticci R, Turvani G et al (2019) Design and experimental assessment of a 2D microwave imaging system for brain stroke monitoring. Int J Antennas Propag 2019:e8065036

    Google Scholar 

  58. Vasquez J, Scapaticci R, Turvani G et al (2020) A prototype microwave system for 3D brain stroke imaging. Sensors 20(9):2607

    Article  Google Scholar 

  59. Duarte D O R, Vasquez J A T, Vipiana F (2020) Electromagnetic virtual prototyping of a realistic 3-D microwave scanner for brain stroke imaging. In: 2020 14th European Conference on Antennas and Propagation (EuCAP) 1–4

  60. Tesarik J, Vrba J (2020) Validation of multilevel 24-port microwave imaging system for brain stroke monitoring on synthetic numerical data. In: 2020 14th European Conference on Antennas and Propagation (EuCAP), 1–5

  61. Ye X, Chen X (2017) Subspace-based distorted-born iterative method for solving inverse scattering problems. IEEE Trans Antennas Propag 65(12):7224–7232

    Article  Google Scholar 

  62. Karadima O, Rahman M, Sotiriou I et al (2020) Experimental validation of microwave tomography with the DBIM-TwIST algorithm for brain stroke detection and classification. Sensors 20(3):840

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mariano V, Vasquez J, Scapaticci R, et al. (2020) Comparison of reconstruction algorithms for brain stroke microwave imaging 1–3

  64. Ghavami N, Razzicchia E, Karadima O et al (2021) The use of metasurfaces to enhance microwave imaging: experimental validation for tomographic and radar-based algorithms. IEEE Open J Antennas Propag 3:89–100

    Article  Google Scholar 

  65. Karadima O, Ghavami N, Sotiriou I, et al. (2020) Performance assessment of microwave tomography and radar imaging using an anthropomorphic brain phantom. In: 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, Rome.

  66. Ghavami N, Sotiriou I, Kosmas P (2019) Preliminary experimental validation of radar imaging for stroke detection with phantoms. 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall)

  67. Karadima O, Lu P, Sotiriou I et al (2022) Experimental validation of the DBIM-TwIST algorithm for brain stroke detection and differentiation using a multi-layered anatomically complex head phantom. IEEE Open J Antennas Propag 3:274–286

    Article  Google Scholar 

  68. Lu P, Kosmas P (2022) Three-dimensional microwave head imaging with GPU-based FDTD and the DBIM method. Sensors 22:2691

    Article  PubMed  PubMed Central  Google Scholar 

  69. Guo L, Khosravi-Farsani M, Stancombe A et al (2022) Adaptive clustering distorted born iterative method for microwave brain tomography with stroke detection and classification. IEEE Trans Biomed Eng 69(4):1512–1523

    Article  PubMed  Google Scholar 

  70. Semenov S, Seiser B, Stoegmann E, et al. (2014) Electromagnetic tomography for brain imaging: from virtual to human brain. In: 2014 IEEE Conference on Antenna Measurements & Applications (CAMA), 1–4

  71. Tournier PH, Bonazzoli M, Dolean V et al (2017) Numerical modeling and high-speed parallel computing: new perspectives on tomographic microwave imaging for brain stroke detection and monitoring. IEEE Antennas Propag Mag 59(5):98–110

    Article  Google Scholar 

  72. Henriksson T, Sahebdivan S, Planas R, et al. (2022) Human brain imaging by electromagnetic tomography: a mobile brain scanner for clinical settings. In: 2022 16th European Conference on Antennas and Propagation (EuCAP) 1–5

  73. Elahi MA, O’Loughlin D, Lavoie BR et al (2018) Evaluation of image reconstruction algorithms for confocal microwave imaging: application to patient data. Sensors (Basel) 18(6):1678

    Article  PubMed  Google Scholar 

  74. Zamani A, Abbosh A, Mobashsher A (2016) Fast frequency-based multistatic microwave imaging algorithm with application to brain injury detection. IEEE Trans Microw Theory Tech 64:1–10

    Article  Google Scholar 

  75. Ricci E , Domenico S D , Cianca E , et al. (2015) Artifact removal algorithms for stroke detection using a multistatic MIST beamforming algorithm. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 1930–1933

  76. Klemm M, Craddock IJ, Leendertz JA, et al. (2008) Improved delay-and-sum beamforming algorithm for breast cancer detection. International Journal of Antennas and Propagation 761402–1–761402–9

  77. Xie Y, Guo B, Xu L et al (2006) Multistatic adaptive microwave imaging for early breast cancer detection. IEEE Trans Biomed Eng 53(8):1647–1657

    Article  PubMed  Google Scholar 

  78. Entezami M, Faraji-Dana R, Dehmollaian M (2017) Design and implementation of a head imaging system for trauma detection. In: 2017 Iranian Conference on Electrical Engineering (ICEE), 1983–1986

  79. Ireland D, Bialkowski M (2011) Microwave head imaging for stroke detection. Progress In Electromagn Res M 21:163–175

    Article  Google Scholar 

  80. Ricci E, Colucciello A, Domenico SD, et al. (2015) Modified RAR and PLSR-based artifact removal for stroke detection in UWB radar imaging

  81. Hagness S, Taflove A, Bridges J (1999) Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: design of an antenna-array element. IEEE Trans Antennas Propag 47(5):783–791

    Article  Google Scholar 

  82. Xu L, Hagness S (2001) A confocal microwave imaging algorithm for breast cancer detection. Microwave Wireless Components Lett IEEE 11(3):130–132

    Article  Google Scholar 

  83. Mohammed B J, Abbosh A M, Ireland D. Circular antenna array for brain imaging systems. In: Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation

  84. Mohammed BJ, Abbosh AM, Mustafa S et al (2014) Microwave system for head imaging. IEEE Trans Instrum Meas 63(1):117–123

    Article  Google Scholar 

  85. Mustafa S, Mohammed B, Abbosh A (2013) Novel preprocessing techniques for accurate microwave imaging of human brain. IEEE Antennas Wirel Propag Lett 12:460–463

    Article  Google Scholar 

  86. Mobashsher AT, Abbosh AM, Wang Y (2014) Microwave system to detect traumatic brain injuries using compact unidirectional antenna and wideband transceiver with verification on realistic head phantom. IEEE Trans Microw Theory Tech 62(9):1826–1836

    Article  Google Scholar 

  87. Mohammed B, Bialkowski K, Mustafa S et al (2015) Investigation of noise effect on image quality in microwave head imaging systems. Microwaves, Antennas & Propagation, IET 9(3):200–205

    Article  Google Scholar 

  88. Ricci E, Cianca E, Rossi T et al (2016) (2016) Beamforming algorithms for UWB radar-based stroke detection: trade-off performance-complexity. J Commun Navig Sens Serv (CONASENSE) 1:11–28

    Article  Google Scholar 

  89. Ricci E, Domenico SD, Cianca E et al (2017) PCA-based artifact removal algorithm for stroke detection using UWB radar imaging. Med Biol Eng Compu 55(6):909–921

    Article  Google Scholar 

  90. Ricci E, Cianca E, Rossi T et al (2017) Performance evaluation of novel microwave imaging algorithms for stroke detection using an accurate 3D head model. Wireless Pers Commun 96(3):3317–3331

    Article  Google Scholar 

  91. Saied I, Arslan T (2019) Microwave imaging algorithm for detecting brain disorders. In: 2019 29th International Conference Radioelektronika (RADIOELEKTRONIKA), 1–5

  92. Sohani B, Khalesi B, Ghavami N et al (2020) Detection of haemorrhagic stroke in simulation and realistic 3-D human head phantom using microwave imaging. Biomed Signal Process Control 61:102001

    Article  Google Scholar 

  93. Sohani B, Puttock J, Khalesi B et al (2020) Developing artefact removal algorithms to process data from a microwave imaging device for haemorrhagic stroke detection [J]. Sensors 20(19):5545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lucas A, Iliadis M, Molina R et al (2018) Using deep neural networks for inverse problems in imaging: beyond analytical methods. IEEE Signal Process Mag 35(1):20–36

    Article  Google Scholar 

  95. Cortes C, Vapnik V (1995) Support-vector networks. Machine Learn 20:273–297

    Article  Google Scholar 

  96. Fhager A, Persson M (2011) A microwave measurement system for stroke detection. In: 2011 Loughborough Antennas Propagation Conference, 1–2

  97. Persson M, Fhager A, Trefná HD et al (2014) Microwave-based stroke diagnosis making global prehospital thrombolytic treatment possible. IEEE Trans Biomed Eng 61(11):2806–2817

    Article  PubMed  Google Scholar 

  98. Guo L, Abbosh AM (2015) Microwave imaging of nonsparse domains using born iterative method with wavelet transform and block sparse Bayesian learning. IEEE Trans Antennas Propag 63(11):4877–4888

    Article  Google Scholar 

  99. Guo L, Abbosh A (2018) Stroke localization and classification using microwave tomography with k-means clustering and support vector machine. Bioelectromagnetics 39(4):312–324

    Article  PubMed  Google Scholar 

  100. Qureshi A, Mustansar Z, Mustafa S (2018) Finite-element analysis of microwave scattering from a three-dimensional human head model for brain stroke detection. Royal Society Open Science 5(7):180319

    Article  Google Scholar 

  101. Wu Y, Zhu M, Li D, et al. (2016) Brain stroke localization by using microwave-based signal classification. 2016 International Conference on Electromagnetics in Advanced Applications (ICEAA), 828–831

  102. Fhager A, Candefjord S, Persson M (2018) FDTD based simulation study of a classification based hemorrhagic stroke detector. In: 12th European Conference on Antennas and Propagation (EuCAP 2018), 1–3

  103. Zhu G, Bialkowski A, Guo L et al (2021) Stroke classification in simulated electromagnetic imaging using graph approaches [J]. IEEE J Electromagn RF Microwaves Med Biol 5(1):46–53

    Article  Google Scholar 

  104. Al-Saffar A, Bialkowski A, Baktashmotlagh M et al (2021) Closing the gap of simulation to reality in electromagnetic imaging of brain strokes via deep neural networks. IEEE Trans Comput Imaging 7:13–21

    Article  Google Scholar 

  105. Borgwardt KM, Gretton A, Rasch MJ et al (2006) Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22(14):e49–e57

    Article  CAS  PubMed  Google Scholar 

  106. Alon L, Dehkharghani S (2021) A stroke detection and discrimination framework using broadband microwave scattering on stochastic models with deep learning. Sci Rep 11(1):1–9

    Article  Google Scholar 

  107. Al-Saffar A, Zamani A, Stancombe A et al (2022) Operational learning-based boundary estimation in electromagnetic medical imaging. IEEE Trans Antennas Propag 70(3):2234–2245

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xiong.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Chen, L., Xiong, H. et al. Review of microwave imaging algorithms for stroke detection. Med Biol Eng Comput 61, 2497–2510 (2023). https://doi.org/10.1007/s11517-023-02848-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02848-5

Keywords

Navigation