Skip to main content
Log in

Comparison of four machine learning algorithms for a pre-impact fall detection system

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In recent years, real-time health monitoring using wearable sensors has been an active area of research. This paper presents an efficient and low-cost fall detection system based on a pair of shoes equipped with inertial sensors and plantar pressure sensors. In addition, four machine learning algorithms (KNN, SVM, RF, and BP neural network) are compared in terms of their detection performance and suitability for pre-impact fall detection. The results show that KNN and BP neural network outperformed the other two algorithms, where KNN had 98.8% sensitivity, 99.8% specificity, and 99.7% accuracy, and BP neural network had 100% sensitivity, 99.8% specificity, and 99.9% accuracy. KNN outperformed BP neural network in terms of fitting ability, and their lead times were both 460.95 ms. The system can provide sufficient intervention time for the wearer in the pre-impact phase and together with the touchdown fall protection device can effectively prevent fall injuries.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. United Nations (2019) World population prospects 2019: highlights. Available: https://www.un.org/zh/node/89774. Accessed 17 Jun 2022

  2. World Health Organization (WHO) (2017) World report on ageing and health. Available: https://apps.who.int/iris/bitstream/handle/10665/186463/9789240694811_eng.pdf?sequence=1&isAllowed=y. Accessed 17 Jun 2022

  3. Ambrose AF, Paul G, Hausdorff JM (2013) Risk factors for falls among older adults: a review of the literature. Maturitas 75(1):51–61

    Article  PubMed  Google Scholar 

  4. Dinh MM, Roncal S, Byrne CM et al (2013) Growing trend in older patients with severe injuries: mortality and mechanisms of injury between 1991 and 2010 at an inner city major trauma centre. ANZ J Surg 83(1–2):65–69

    Article  PubMed  Google Scholar 

  5. Spaite D, Criss E, Valenzuela T et al (1990) Geriatric injury: an analysis of prehospital demographics, mechanisms, and patterns. Ann Emerg Med 19(12):1418–1421

    Article  CAS  PubMed  Google Scholar 

  6. Nyberg L, Gustafson Y, Berggren D et al (1996) Falls leading to femoral neck fractures in lucid older people. J Am Geriatr Soc 44(2):156–160

    Article  CAS  PubMed  Google Scholar 

  7. Hamm J, Money A, Atwal A et al (2016) Fall prevention intervention technologies: a conceptual framework and survey of the state of the art. J Biomed Inform 59:319–345

    Article  PubMed  Google Scholar 

  8. Rahman MM, Islam MM, Ahmmed S et al (2020) Obstacle and fall detection to guide the visually impaired people with real time monitoring. SN Comput Sci 1:1–10

    Article  Google Scholar 

  9. Yang Y, Yang H, Liu Z et al (2022) Fall detection system based on infrared array sensor and multi-dimensional feature fusion. Measurement 192:110870

  10. Yu X, Koo B, Jang J et al (2022) A comprehensive comparison of accuracy and practicality of different types of algorithms for pre-impact fall detection using both young and old adults. Measurement 201:111785

  11. Li M, Xu G, He B et al (2018) Pre-impact fall detection based on a modified zero moment point criterion using data from Kinect sensors. IEEE Sensors J 18(13):5522–5531

    Article  Google Scholar 

  12. Hu X, Qu X (2014) An individual-specific fall detection model based on the statistical process control chart. Saf Sci 64:13–21

    Article  Google Scholar 

  13. Ahn S, Choi D, Kim J et al (2018) Optimization of a pre-impact fall detection algorithm and development of hip protection airbag system. Sensors Mater 30(8):1743–1752

    Article  Google Scholar 

  14. Zhao G, Mei Z, Liang D et al (2012) Exploration and implementation of a pre-impact fall recognition method based on an inertial body sensor network. Sensors 12(11):15338–15355

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shi G, Chan CS, Li WJ et al (2009) Mobile human airbag system for fall protection using MEMS sensors and embedded SVM classifier. IEEE Sensors J 9(5–6):495–503

    Article  Google Scholar 

  16. Mubashir M, Shao L, Seed L (2013) A survey on fall detection: principles and approaches. Neurocomputing 100:144–152

    Article  Google Scholar 

  17. Chen YT, Lin YC, Fang WH (2010) A video-based human fall detection system for smart homes. J Chin Inst Eng 33(5):681–690

    Article  Google Scholar 

  18. Willems J, Debard G, Vanrumste B et al (2009) A video-based algorithm for elderly fall detection. World Congress Med Phys Biomed Eng 25:312

    Google Scholar 

  19. Wang K, Cao GT, Meng D et al (2016) Automatic fall detection of human in video using combination of features. Proc IEEE Int Conf Bioinforma Biomed. pp 1228–1233

  20. Ariani A, Redmond SJ, Chang D et al (2010) Software simulation of unobtrusive falls detection at night-time using passive infrared and pressure mat sensors. Proc Annual International Conference of the IEEE Engineering in Medicine and Biology. pp 2115–2118

    Google Scholar 

  21. Bouakaz S, Vacher M, Chaumon MEB et al (2014) CIRDO: smart companion for helping elderly to live at home for longer. IRBM 35(2):100–108

    Article  Google Scholar 

  22. Nooruddin S, Islam MM, Sharna FAJIoT (2020) An IoT based device-type invariant fall detection system. Internet Things 9:100130

    Article  Google Scholar 

  23. Lu J, Ye W-B (2022) Design of a multistage radar-based human fall detection system. IEEE Sensors J 22(13):13177–13187

    Article  Google Scholar 

  24. Zigel Y, Litvak D, Gannot I (2009) A method for automatic fall detection of elderly people using floor vibrations and sound-proof of concept on human mimicking doll falls. IEEE Trans Biomed Eng 56(12):2858–2867

    Article  PubMed  Google Scholar 

  25. Aziz O, Musngi M, Park EJ et al (2017) A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials. Med Biol Eng Compu 55(1):45–55

    Article  Google Scholar 

  26. Islam MM, Neom N, Imtiaz MS et al (2019) A review on fall detection systems using data from smartphone sensors. Ingénierie Des Systèmes D Inf 24(6):569–576

    Article  Google Scholar 

  27. Islam MM, Nooruddin S, Karray F et al (2023) Multi-level feature fusion for multimodal human activity recognition in Internet of Healthcare Things. Inf Fusion 94:17–31

    Article  Google Scholar 

  28. Rescio G, Leone A, Siciliano P (2018) Supervised machine learning scheme for electromyography-based pre-fall detection system. Expert Syst Appl 100:95–105

    Article  Google Scholar 

  29. Lee JK, Robinovitch SN, Park EJ (2015) Inertial sensing-based pre-impact detection of falls involving near-fall scenarios. IEEE Trans Neural Syst Rehabil Eng 23(2):258–266

    Article  PubMed  Google Scholar 

  30. Liang S, Chu T, Lin D et al (2018) “Pre-impact alarm system for fall detection using MEMS sensors and HMM-based SVM classifier”, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annu Int Conf 2018:4401–4405

    Google Scholar 

  31. Shi JY, Chen DS, Wang M (2020) Pre-impact fall detection with CNN-based class activation mapping method. Sensors 20(17):4750

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ando B, Baglio S, Lombardo CO et al (2016) A multisensor data-fusion approach for ADL and fall classification. IEEE Trans Instrum Meas 65(9):1960–1967

    Article  Google Scholar 

  33. Soonjae A, Jongman K, Bummo K et al (2019) Evaluation of inertial sensor-based pre-impact fall detection algorithms using public dataset. Sensors 19(4):774

    Article  Google Scholar 

  34. Zhong Z, Chen F, Zhai Q et al (2018) A real-time pre-impact fall detection and protection system. IEEE ASME International Conference on Advanced Intelligent Mechatronics, pp. 1039–1044

  35. Wu YF, Su YW, Feng RJ et al (2019) Wearable-sensor-based pre-impact fall detection system with a hierarchical classifier. Measurement 140:283–292

    Article  Google Scholar 

  36. Martelli D, Artoni F, Monaco V et al (2014) Pre-impact fall detection: optimal sensor positioning based on a machine learning paradigm. Plos One 9(3):e92037

  37. Noury N, Rumeau P, Bourke AK et al (2008) A proposal for the classification and evaluation of fall detectors. IRBM 29(6):340–349

    Article  Google Scholar 

  38. Kim TH, Choi A, Heo HM et al (2019) Machine learning-based pre-impact fall detection model to discriminate various types of fall. J Biomech Eng Trans ASME 141(8):081010

  39. Tao Y, Qian M, Shi X et al (2011) A real-time intelligent shoe system for fall detection. Proc IEEE International Conference on Robotics and Biomimetics. pp 2253–2258

    Google Scholar 

  40. Su J (2016) Use big data to investigate plantar pressure distribution of the Chinese people. Proc Int Conf Intell Cont Comput Appl. pp 286–288

    Google Scholar 

  41. Xu Z, Shen D, Nie T et al (2021) A cluster-based oversampling algorithm combining SMOTE and k-means for imbalanced medical data. Inf Sci 572:574–589

    Article  Google Scholar 

  42. Chawla NV, Bowyer KW, Hall LO et al (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16:321–357

    Article  Google Scholar 

  43. Schipani P, Marty L (2006) Stewart platform kinematics and secondary mirror aberration control. Optomechanical Technol Astron 6273:1039–1050

    Google Scholar 

  44. Vrieling A, Van Keeken HG, Schoppen T et al (2008) Balance control on a moving platform in unilateral lower limb amputees. Gait Posture 28(2):222–228

    Article  CAS  PubMed  Google Scholar 

  45. Shan S, Yuan T (2010) A wearable pre-impact fall detector using feature selection and support vector machine. Proc Int Conf Signal Processing. pp 1686–1689

  46. Bigoni C, Cadic-Melchior A, Hummel FC et al (2021) Best phase-forecasting method for brain-state dependent stimulation: a grid-search approach. Brain Stimulation 14(6):1641

    Article  Google Scholar 

  47. Agrawal RK, Sewani RR, Delen D et al (2022) A machine learning approach for classifying healthy and infarcted patients using heart rate variabilities derived vector magnitude. Healthcare Analytics 2:100121

    Article  Google Scholar 

  48. Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  49. Barker A, Murphy J (2017) Machine learning approach for optimal determination of wave parameter relationships. IET Renew Power Gener 11(9):1127–1135

    Article  Google Scholar 

  50. Xiao J, Ren W, Huang X et al (2018) A surface electromyography-based pre-impact fall detection method. Proc Chin Autom Congr :681–685

Download references

Acknowledgements

We thank all the subjects who participated in this study.

Funding

The authors gratefully acknowledge the financial support of Shanghai Science and Technology innovation action plan (19DZ2203600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duojin Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Li, Z. Comparison of four machine learning algorithms for a pre-impact fall detection system. Med Biol Eng Comput 61, 1961–1974 (2023). https://doi.org/10.1007/s11517-023-02853-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02853-8

Keywords

Navigation