Skip to main content
Log in

Non-contact high precision pulse-rate monitoring system for moving subjects in different motion states

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Remote photoplethysmography (rPPG) enables contact-free monitoring of the pulse rate by using a color camera. The fundamental limitation is that motion artifacts and changes in ambient light conditions greatly affect the accuracy of pulse-rate monitoring. We propose use of a high-speed camera and a motion suppression algorithm with high computational efficiency. This system incorporates a number of major improvements including reproduction of pulse wave details, high-precision pulse-rate monitoring of moving subjects, and excellent scene scalability. A series of quantization methods were used to evaluate the effect of different frame rates and different algorithms in pulse-rate monitoring of moving subjects. The experimental results show that use of 180-fps video and a Plane-Orthogonal-to-Skin (POS) algorithm can produce high-precision pulse-rate monitoring results with mean absolute error can be less than 5 bpm and the relative accuracy reaching 94.5%. Thus, it has significant potential to improve personal health care and intelligent health monitoring.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Takano C, Ohta Y (2007) Heart rate measurement based on a time-lapse image. Med Eng Phys 29(8):853–857

    Article  PubMed  Google Scholar 

  2. Sun Y, Thakor N (2016) Photoplethysmography revisited: from contact to noncontact, from point to imaging. IEEE Trans Biomed Eng 63(3):463–477. https://doi.org/10.1109/TBME.2015.2476337

    Article  PubMed  Google Scholar 

  3. McDuff DJ, Estepp JR, Piasecki AM, Blackford EB (2015) A survey of remote optical photoplethysmographic imaging methods. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, Milan, Italy, pp 6398–6404. https://doi.org/10.1109/EMBC.2015.7319857

    Chapter  Google Scholar 

  4. Verkruysse W, Svaasand LO, Nelson JS (2008) Remote plethysmographic imaging using ambient light. Opt Express 16(26):21434–21445

    Article  CAS  PubMed  Google Scholar 

  5. Avolio AP, Butlin M, Walsh A (2010) Arterial blood pressure measurement and pulse wave analysis-their role in enhancing cardiovascular assessment. Physiol Meas 31(1):R1–R47. https://doi.org/10.1088/0967-3334/31/1/R01

    Article  PubMed  Google Scholar 

  6. Suh KH, Lee EC (2017) Contactless physiological signals extraction based on skin color magnification. J Electron Imaging 26(6):063003. https://doi.org/10.1117/1.JEI.26.6.063003

    Article  Google Scholar 

  7. McDuff D, Gontarek S, Picard RW (2014) Remote detection of photoplethysmographic systolic and diastolic peaks using a digital camera. IEEE Trans Biomed Eng 61(12):2948–2954. https://doi.org/10.1109/TBME.2014.2340991

    Article  PubMed  Google Scholar 

  8. Kim S-E, Yu S-G, Kim NH, Suh KH, Lee EC (2021) Restoration of remote PPG signal through correspondence with contact sensor signal. Sens 21(17):5910. https://doi.org/10.3390/s21175910

    Article  Google Scholar 

  9. Kim H, Kim Y, Kim J, Lee EC (2013) Method for restoring PPG signals using ECG correspondences and SVR. Electron Lett 49(24):1518–1519. https://doi.org/10.1049/el.2013.2737

    Article  Google Scholar 

  10. Wang W, Stuijk S, de Haan G (2015) Exploiting spatial redundancy of image sensor for motion robust rPPG. IEEE Trans Biomed Eng 62(2):415–425. https://doi.org/10.1109/TBME.2014.2356291

    Article  PubMed  Google Scholar 

  11. Feng L et al (2015) Dynamic ROI based on K-means for remote photoplethysmography. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, South Brisbane, QLD, Australia, pp 1310–1314. https://doi.org/10.1109/ICASSP.2015.7178182

    Chapter  Google Scholar 

  12. Kumar M, Veeraraghavan A, Sabharwal A (2015) DistancePPG: robust non-contact vital signs monitoring using a camera. Biomed Opt Express 6(5):1565–1588. https://doi.org/10.1364/BOE.6.001565

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bobbia S, Macwan R, Benezeth Y, Mansouri A, Dubois J (2019) Unsupervised skin tissue segmentation for remote photoplethysmography. Pattern Recogn Lett 124:82–90. https://doi.org/10.1016/j.patrec.2017.10.017

    Article  Google Scholar 

  14. Poh M-Z, McDuff DJ, Picard RW (2010) Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt Express 18(10):10762–10774. https://doi.org/10.1364/OE.18.010762

    Article  CAS  PubMed  Google Scholar 

  15. Lewandowska M, Rumiński J, Kocejko T, Nowak J (2011) Measuring pulse rate with a webcam—a non-contact method for evaluating cardiac activity. In: 2011 Federated Conference on Computer Science and Information Systems (FedCSIS). IEEE, Szczecin, Poland, pp 405–410

    Google Scholar 

  16. de Haan G, Jeanne V (2013) Robust pulse rate from chrominance-based rPPG. IEEE Trans Biomed Eng 60(10):2878–2886. https://doi.org/10.1109/TBME.2013.2266196

    Article  PubMed  Google Scholar 

  17. de Haan G, van Leest A (2014) Improved motion robustness of remote-PPG by using the blood volume pulse signature. Physiol Meas 35(9):1913–1926. https://doi.org/10.1088/0967-3334/35/9/1913

    Article  PubMed  Google Scholar 

  18. Wang W, den Brinker AC, Stuijk S, de Haan G (2017) Algorithmic principles of remote PPG. IEEE Trans Biomed Eng 64(7):1479–1491. https://doi.org/10.1109/TBME.2016.2609282

    Article  PubMed  Google Scholar 

  19. Wang W, Stuijk S, de Haan G (2016) A novel algorithm for remote photoplethysmography: spatial subspace rotation. IEEE Trans Biomed Eng 63(9):1974–1984. https://doi.org/10.1109/TBME.2015.2508602

    Article  PubMed  Google Scholar 

  20. Pilz CS, Zaunseder S, Krajewski J, Blazek V (2018) Local group invariance for heart rate estimation from face videos in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp 1254–1262

    Google Scholar 

  21. Hülsbusch M (2008) An image-based functional method for opto-electronic detection of skin-perfusion. Phd Thesis, RWTH Aachen Dept. of EE (in German)

  22. Po L-M, Feng L, Li Y, Xu X, Cheung TC-H, Cheung K-W (2018) Block-based adaptive ROI for remote photoplethysmography. Multimed Tools Appl 77(6):6503–6529

    Article  Google Scholar 

  23. Song R, Chen H, Cheng J, Li C, Liu Y, Chen X (2021) PulseGAN: learning to generate realistic pulse waveforms in remote photoplethysmography. IEEE J Biomed Health Inform 25(5):1373–1384. https://doi.org/10.1109/JBHI.2021.3051176

    Article  PubMed  Google Scholar 

  24. Boccignone G, Conte D, Cuculo V, D’Amelio A, Grossi G, Lanzarotti R (2020) An open framework for remote-PPG methods and their assessment. IEEE Access 8:216083–216103. https://doi.org/10.1109/ACCESS.2020.3040936

    Article  Google Scholar 

  25. Przyby J (2022) A deep learning approach for remote heart rate estimation. Biomed Signal Process Control 74:103457. https://doi.org/10.1016/j.bspc.2021.103457

    Article  Google Scholar 

  26. Yue Z et al (2021) Deep super-resolution network for rPPG information recovery and noncontact heart rate estimation. IEEE Trans Instrum Meas 70:1–11. https://doi.org/10.1109/TIM.2021.3109398

    Article  Google Scholar 

  27. Hu C et al (2021) An end-to-end efficient framework for remote physiological signal sensing. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). IEEE, Montreal, BC, Canada, pp 2378–2384. https://doi.org/10.1109/ICCVW54120.2021.00269

    Chapter  Google Scholar 

  28. Huang B et al (2021) A neonatal dataset and benchmark for non-contact neonatal heart rate monitoring based on spatio-temporal neural networks. Eng Appl Artif Intell 106:104447. https://doi.org/10.1016/j.engappai.2021.104447

    Article  Google Scholar 

  29. Lee H et al (2022) Multitask Siamese network for remote photoplethysmography and respiration estimation. Sens 22(14):5101. https://doi.org/10.3390/s22145101

    Article  Google Scholar 

  30. Sabokrou M, Pourreza M, Li X, Fathy M, Zhao G (2021) Deep-hr: fast heart rate estimation from face video under realistic conditions. Expert Syst Appl 186:115596

    Article  Google Scholar 

  31. Wu B-F, Wu Y-C, Chou Y-W (2022) A compensation network with error mapping for robust remote photoplethysmography in noise-heavy conditions. IEEE Trans Instrum Meas 71:1–11. https://doi.org/10.1109/TIM.2022.3141149

    Article  Google Scholar 

  32. Qiu Z, Liu J, Sun H, Lin L, Chen Y-W (2022) CoSTHR: a heart rate estimating network with adaptive color space transformation. IEEE Trans Instrum Meas 71:1–10. https://doi.org/10.1109/TIM.2022.3170976

    Article  Google Scholar 

  33. Perche S, Botina D, Benezeth Y, Nakamura K, Gomez R, Miteran J (2021) Data-augmentation for deep learning based remote photoplethysmography methods. In: 2021 International Conference on E-Health and Bioengineering (Ehb). IEEE, Iasi, Romania, pp 1–4

    Google Scholar 

  34. Hu M, Qian F, Guo D, Wang X, He L, Ren F (2021) ETA-rPPGNet: effective time-domain attention network for remote heart rate measurement. IEEE Trans Instrum Meas 70:1–12. https://doi.org/10.1109/TIM.2021.3058983

    Article  Google Scholar 

  35. Hu M, Qian F, Wang X, He L, Guo D, Ren F (2022) Robust heart rate estimation with spatial-temporal attention network from facial videos. IEEE Trans Cogn Dev 14(2):639–647. https://doi.org/10.1109/TCDS.2021.3062370

    Article  Google Scholar 

  36. Zhao C, Hu M, Ju F et al (2022) Convolutional neural network with spatio-temporal-channel attention for remote heart rate estimation. Vis Comput 1–19. https://doi.org/10.1007/s00371-022-02624-w

  37. Lokendra B, Puneet G (2022) AND-rPPG: A novel denoising-rPPG network for improving remote heart rate estimation. Comput Biol Med 141:105146. https://doi.org/10.1016/j.compbiomed.2021.105146

    Article  PubMed  Google Scholar 

  38. Niu X, Shan S, Han H, Chen X (2020) RhythmNet: end-to-end heart rate estimation from face via spatial-temporal representation. IEEE Trans Image Process 29:2409–2423. https://doi.org/10.1109/TIP.2019.2947204

    Article  Google Scholar 

  39. Niu X, Han H, Shan S, Chen X (2019) VIPL-HR: a multi-modal database for pulse estimation from less-constrained face video. In: Computer Vision–ACCV 2018: 14th Asian Conference on Computer Vision. Springer International Publishing, Perth, Australia, December 2–6, 2018, Revised Selected Papers, Part V 14, pp 562–576

    Chapter  Google Scholar 

  40. Wang W, den Brinker AC, De Haan G (2018) Full video pulse extraction. Biomed Opt Express 9(8):3898–3914. https://doi.org/10.1364/BOE.9.003898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vogels T, Van Gastel M, Wang W et al (2018) Fully-automatic camera-based pulse-oximetry during sleep. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. IEEE, Salt Lake City, UT, pp 1349–1357

  42. Wang T, Shen F, Deng H, Cai F, Chen S (2022) Smartphone imaging spectrometer for egg/meat freshness monitoring. Anal Methods 14(5):508–517. https://doi.org/10.1039/d1ay01726h

    Article  CAS  PubMed  Google Scholar 

  43. Shen F, Deng H, Yu L et al (2022) Open-source mobile multispectral imaging system and its applications in biological sample sensing. Spectrochim Acta A Mol Biomol Spectrosc 280:121504

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by Major Science and Technology Project of Hainan Province, ZDKJ202006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuhong Cai.

Ethics declarations

Ethics approval

This study was approved by the Animal Ethics Committee of Hainan University; informed consent was obtained from each participant. They also have permitted their own images to appear in the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Lin, X., Zhang, Y. et al. Non-contact high precision pulse-rate monitoring system for moving subjects in different motion states. Med Biol Eng Comput 61, 2769–2783 (2023). https://doi.org/10.1007/s11517-023-02884-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02884-1

Keywords