Skip to main content

Advertisement

Log in

Optic disc detection based on fully convolutional network and weighted matrix recovery model

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Eye diseases often affect human health. Accurate detection of the optic disc contour is one of the important steps in diagnosing and treating eye diseases. However, the structure of fundus images is complex, and the optic disc region is often disturbed by blood vessels. Considering that the optic disc is usually a saliency region in fundus images, we propose a weakly-supervised optic disc detection method based on the fully convolution neural network (FCN) combined with the weighted low-rank matrix recovery model (WLRR). Firstly, we extract the low-level features of the fundus image and cluster the pixels using the Simple Linear Iterative Clustering (SLIC) algorithm to generate the feature matrix. Secondly, the top-down semantic prior information provided by FCN and bottom-up background prior information of the optic disc region are used to jointly construct the prior information weighting matrix, which more accurately guides the decomposition of the feature matrix into a sparse matrix representing the optic disc and a low-rank matrix representing the background. Experimental results on the DRISHTI-GS dataset and IDRiD dataset show that our method can segment the optic disc region accurately, and its performance is better than existing weakly-supervised optic disc segmentation methods.

Graphical abstract

Graphical abstract of optic disc segmentation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Achanta R, Shaji A, Smith K et al (2012) Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282

    Article  PubMed  Google Scholar 

  2. Almazroa A, Burman R, Raahemifar K et al (2015) Optic disc and optic cup segmentation methodologies for glaucoma image detection: a survey. J Ophthalmol 2015. https://doi.org/10.1155/2015/180972

  3. Aquino A, Gegúndez-Arias ME, Marín D (2010) Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans Med Imaging 29(11):1860–1869

    Article  PubMed  Google Scholar 

  4. Babu TG, Shenbagadevi S (2011) Automatic detection of glaucoma using fundus image. Eur J Sci Res 59(1):22–32

    Google Scholar 

  5. Candès EJ, Li X, Ma Y et al (2011) Robust principal component analysis? https://doi.org/10.1145/1970392.1970395

  6. Chang KY, Liu TL, Chen HT et al (2011) Fusing generic objectness and visual saliency for salient object detection. In: 2011 International Conference on Computer Vision, IEEE, pp 914–921

  7. Cheng J, Yin F, Wong DWK et al (2015) Sparse dissimilarity-constrained coding for glaucoma screening. IEEE Trans Biomed Eng 62(5):1395–1403

    Article  PubMed  Google Scholar 

  8. Cheng MM, Mitra NJ, Huang X et al (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37:569–582. https://doi.org/10.1109/TPAMI.2014.2345401

    Article  PubMed  Google Scholar 

  9. Fu H, Cheng J, Xu Y et al (2018) Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans Med Imaging 37(7):1597–1605

    Article  PubMed  Google Scholar 

  10. Gao Y, Yu X, Wu C et al (2019) Accurate and efficient segmentation of optic disc and optic cup in retinal images integrating multi-view information. IEEE Access 7:148,183–148,197

  11. Goferman S, Zelnik-Manor L, Tal A (2012) Context-aware saliency detection. IEEE Trans Pattern Anal Mach Intell 34:1915–1926. https://doi.org/10.1109/TPAMI.2011.272

    Article  PubMed  Google Scholar 

  12. Haleem MS, Han L, van Hemert J et al (2013) Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review. Comput Med Imaging and Graph 37(7):581-596

    Article  Google Scholar 

  13. Hou X, Harel J, Koch C (2012) Image signature: highlighting sparse salient regions. IEEE Trans Pattern Anal Mach Intell 34:194–201. https://doi.org/10.1109/TPAMI.2011.146

    Article  Google Scholar 

  14. Juneja M, Singh S, Agarwal N et al (2020a) Automated detection of glaucoma using deep learning convolution network (g-net). Multimed Tools Appl 79(21):15,531–15,553

  15. Juneja M, Singh S, Agarwal N et al (2020b) Automated detection of glaucoma using deep learning convolution network (g-net). Multimed Tools Appl 79. https://doi.org/10.1007/s11042-019-7460-4

  16. Lalonde M, Beaulieu M, Gagnon L (2001) Fast and robust optic disc detection using pyramidal decomposition and hausdorff-based template matching. IEEE Trans Med Imaging 20(11):1193-1200

    Article  CAS  PubMed  Google Scholar 

  17. Lee S, Brady M (1991) Optic disk boundary detection. In: BMVC91. Springer, p 359–362

  18. Li H, Chutatape O (2003) Boundary detection of optic disk by a modified asm method. Pattern Recognit 36(9):2093-2104

    Article  Google Scholar 

  19. Lim G, Cheng Y, Hsu W et al (2015) Integrated optic disc and cup segmentation with deep learning. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), IEEE, pp 162–169

  20. Lin Z, Liu R, Su Z (2011) Linearized alternating direction method with adaptive penalty for low-rank representation. Advances in neural information processing systems 24

  21. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

  22. Margolin R, Tal A, Zelnik-Manor L (2013) What makes a patch distinct? pp 1139–1146, https://doi.org/10.1109/CVPR.2013.151

  23. Mithun NC, Das S, Fattah SA (2014) Automated detection of optic disc and blood vessel in retinal image using morphological, edge detection and feature extraction technique. 16th Int’l Conf. Computer and Information Technology, IEEE, pp 98–102

  24. Mittapalli PS, Kande GB (2016) Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma. Biomed Signal Process Control 24:34–46

    Article  Google Scholar 

  25. Mohamed NA, Zulkifley MA, Zaki WMDW et al (2019) An automated glaucoma screening system using cup-to-disc ratio via simple linear iterative clustering superpixel approach. Biomed Signal Process Control 53(101):454

    Google Scholar 

  26. Niemeijer M, Abràmoff MD, Van Ginneken B (2009) Fast detection of the optic disc and fovea in color fundus photographs. Med Image Anal 13(6):859–870

    Article  PubMed  PubMed Central  Google Scholar 

  27. Niu D, Xu P, Wan C et al (2017) Automatic localization of optic disc based on deep learning in fundus images. In: 2017 IEEE 2nd international conference on signal and image processing (ICSIP), IEEE, pp 208–212

  28. Pang Y, Wu H, Wu C (2023) Cross-modal co-feedback cellular automata for rgb-t saliency detection. Pattern Recognit 135(109):138

    Google Scholar 

  29. Perez CA, Schulz DA, Aravena CM et al (2013) A new method for online retinal optic-disc detection based on cascade classifiers. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics, IEEE, pp 4300–4304

  30. Porwal P, Pachade S, Kamble R et al (2018) Indian diabetic retinopathy image dataset (idrid): a database for diabetic retinopathy screening research. Data 3(3):25

    Article  Google Scholar 

  31. Reza AW, Eswaran C, Hati S (2009) Automatic tracing of optic disc and exudates from color fundus images using fixed and variable thresholds. J Med Syst 33(1):73–80

    Article  PubMed  Google Scholar 

  32. Scharfenberger C, Wong A, Fergani K et al (2013) Statistical textural distinctiveness for salient region detection in natural images. pp 979–986, https://doi.org/10.1109/CVPR.2013.131

  33. Sevastopolsky A (2017) Optic disc and cup segmentation methods for glaucoma detection with modification of u-net convolutional neural network. Pattern Recognit Image Anal 27(3):618–624

    Article  Google Scholar 

  34. Shen X, Wu Y (2012) A unified approach to salient object detection via low rank matrix recovery. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 853–860

  35. Simoncelli E, Freeman W (1995) The steerable pyramid: a flexible architecture for multi-scale derivative computation. In: Proceedings., International Conference on Image Processing, pp 444–447 vol.3, https://doi.org/10.1109/ICIP.1995.537667

  36. Sivaswamy J, Krishnadas S, Joshi GD et al (2014) Drishti-gs: retinal image dataset for optic nerve head (onh) segmentation. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI), IEEE, pp 53–56

  37. Sánchez CI, Niemeijer M, Dumitrescu AV et al (2011) Evaluation of a computer-aided diagnosis system for diabetic retinopathy screening on public data. Invest Ophthalmol Vis Sci 52:4866–4871. https://doi.org/10.1167/iovs.10-6633

    Article  PubMed  Google Scholar 

  38. Tang C, Wang P, Zhang C et al (2016) Salient object detection via weighted low rank matrix recovery. IEEE Signal Process Lett 24(4):490–494

    Article  Google Scholar 

  39. Wang J, Xia B (2021) Bounding box tightness prior for weakly supervised image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, pp 526–536

  40. Wang L, Liu H, Lu Y et al (2019) A coarse-to-fine deep learning framework for optic disc segmentation in fundus images. Biomed Signal Process Control 51:82–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Welfer D, Scharcanski J, Kitamura CM et al (2010) Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach. Comput Biol Med 40(2):124–137

    Article  PubMed  Google Scholar 

  42. Xiong H, Liu S, Sharan RV et al (2022) Weak label based bayesian u-net for optic disc segmentation in fundus images. Artif Intell Med 126(102):261

    Google Scholar 

  43. Yan J, Zhu M, Liu H et al (2010) Visual saliency detection via sparsity pursuit. IEEE Signal Process Lett 17:739–742. https://doi.org/10.1109/LSP.2010.2053200

    Article  Google Scholar 

  44. Yan Q, Xu L, Shi J et al (2013) Hierarchical saliency detection. pp 1155–1162, https://doi.org/10.1109/CVPR.2013.153

  45. Yin F, Liu J, Ong SH et al (2011) Model-based optic nerve head segmentation on retinal fundus images. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, pp 2626–2629

  46. Zeevi YY, Zibulski M, Porat M (1998) Gabor analysis and algorithms. Gabor analysis and algorithms

  47. Zhou H, Schaefer G, Liu T et al (2010) Segmentation of optic disc in retinal images using an improved gradient vector flow algorithm. Multimed Tools Appl 49(3):447–462

    Article  Google Scholar 

  48. Zilly J, Buhmann JM, Mahapatra D (2017) Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput Med Imaging Graph 55:28–41

    Article  PubMed  Google Scholar 

  49. Zou B, Liu Q, Yue K et al (2019) Saliency-based segmentation of optic disc in retinal images. Chin J Electron 28(1):71–75

    Article  Google Scholar 

  50. Zou W, Kpalma K, Liu Z et al (2013) Segmentation driven low-rank matrix recovery for saliency detection. In: 24th British machine vision conference (BMVC), pp 1–13

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China under Grant nos. U20A20197, 61973063, Liaoning Key Research and Development Project 2020JH2/10100040, Natural Science Foundation of Liaoning Province 2021-KF-12-01 and the Foundation of National Key Laboratory OEIP-O-202005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosheng Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xiaosheng Yu and Chengdong Wu contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Yu, X., Jia, W. et al. Optic disc detection based on fully convolutional network and weighted matrix recovery model. Med Biol Eng Comput 61, 3319–3333 (2023). https://doi.org/10.1007/s11517-023-02891-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02891-2

Keywords

Navigation