Skip to main content
Log in

Microstructural fatigue fracture behavior of glycated cortical bone

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

A Correction to this article was published on 13 December 2023

This article has been updated

Abstract

The current study aims to simulate fatigue microdamage accumulation in glycated cortical bone with increased advanced glycation end-products (AGEs) using a phase field fatigue framework. We link the material degradation in the fracture toughness of cortical bone to the high levels of AGEs in this tissue. We simulate fatigue fracture in 2D models of cortical bone microstructure extracted from human tibias. The results present that the mismatch between the critical energy release rate of microstructural features (e.g., osteons and interstitial tissue) can alter crack initiation and propagation patterns. Moreover, the high AGEs content through the increased mismatch ratio can cause the activation or deactivation of bone toughening mechanisms under cyclic loading. The fatigue fracture simulations also show that the lifetime of diabetic cortical bone samples can be dependent on the geometry of microstructural features and the mismatch ratio between the features. Additionally, the results indicate that the trapped cracks in cement lines in the diabetic cortical microstructure can prevent further crack growth under cyclic loading. The present findings show that alterations in the materials heterogeneity of microstructural features can change the fatigue fracture response, lifetime, and fragility of cortical bone with high AGEs contents.

Graphical abstract

Cortical bone models are created from microscopy images taken from the cortical cross-section of human tibias. Increased glycation contents in the cortical bone sample can change the crack growth trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Acevedo C, Stadelmann VA, Pioletti DP, Alliston T, Ritchie RO (2018) Fatigue as the missing link between bone fragility and fracture. Nature Biomed Eng 2(2):62–71

    Article  Google Scholar 

  2. Lodge CJ, Sha S, Yousef ASE, MacEachern C (2020) Stress fractures in the young adult hip. J Orthop Trauma 34(2):95–100

    Article  Google Scholar 

  3. Iwamoto J, Takeda T (2003) Stress fractures in athletes: review of 196 cases. J Orthop Sci 8(3):273–278

    Article  PubMed  Google Scholar 

  4. Meurman K, Elfving S (1980) Stress fracture in soldiers: a multifocal bone disorder. a comparative radiological and scintigraphic study. Radiology 134(2):483–487

    Article  CAS  PubMed  Google Scholar 

  5. Breer S, Krause M, Marshall RP, Oheim R, Amling M, Barvencik F (2012) Stress fractures in elderly patients. Int Orthop 36(12):2581–2587

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carpintero P, Berral FJ, Baena P, Garcia-Frasquet A, Lancho JL (1997) Delayed diagnosis of fatigue fractures in the elderly. Am J Sports Med 25(5):659–662

    Article  CAS  PubMed  Google Scholar 

  7. Colopy S, Benz-Dean J, Barrett J, Sample S, Lu Y, Danova N et al (2004) Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading. Bone 35(4):881–891

    Article  CAS  PubMed  Google Scholar 

  8. Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, Turner CH (1997) Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Mineral Res 12(1):6–15

    Article  CAS  Google Scholar 

  9. Seref-Ferlengez Z, Kennedy OD, Schaffler MB (2015) Bone microdamage, remodeling and bone fragility: how much damage is too much damage? BoneKEy reports 4

  10. Nyman JS, Makowski AJ (2012) The contribution of the extracellular matrix to the fracture resistance of bone. Current osteoporos Rep 10(2):169–177

    Article  Google Scholar 

  11. Vashishth D (2009) Advanced glycation end-products and bone fractures. Ibms Bonekey 6(8):268

    Article  PubMed  PubMed Central  Google Scholar 

  12. Karim L, Bouxsein ML (2016) Effect of type 2 diabetes-related non-enzymatic glycation on bone biomechanical properties. Bone 82:21–27

    Article  CAS  PubMed  Google Scholar 

  13. Collier T, Nash A, Birch H, De Leeuw N (2018) Effect on the mechanical properties of type i collagen of intra-molecular lysine-arginine derived advanced glycation end-product cross-linking. J Biomech 67:55–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Merlo K, Aaronson J, Vaidya R, Rezaee T, Chalivendra V, Karim L (2020) In vitro-induced high sugar environments deteriorate human cortical bone elastic modulus and fracture toughness. J Orthop Res 38(5):972–983

    Article  CAS  PubMed  Google Scholar 

  15. Saito M, Mori S, Mashiba T, Komatsubara S, Marumo K (2008) Collagen maturity, glycation induced-pentosidine, and mineralization are increased following 3-year treatment with incadronate in dogs. Osteoporos Int 19(9):1343–1354

    Article  CAS  PubMed  Google Scholar 

  16. Tang S, Vashishth D (2010) Non-enzymatic glycation alters microdamage formation in human cancellous bone. Bone 46(1):148–154

    Article  CAS  PubMed  Google Scholar 

  17. Nguyen HQ, Nguyen TNT, Pham TQD, Nguyen VD, Tran XV, Dao TT (2021) Crack propagation in the tibia bone within total knee replacement using the extended finite element method. Appl Sci 11(10):4435

    Article  CAS  Google Scholar 

  18. Kahla RB, Barkaoui A, Merzouki T (2018) Age-related mechanical strength evolution of trabecular bone under fatigue damage for both genders: Fracture risk evaluation. J Mech Behav Biomed Mater 84:64–73

    Article  PubMed  Google Scholar 

  19. Hambli R, Hattab N (2013) Application of neural network and finite element method for multiscale prediction of bone fatigue crack growth in cancellous bone. Multiscale Computer Modeling in Biomechanics and Biomedical Engineering 3–30

  20. Waanders D, Janssen D, Miller MA, Mann KA, Verdonschot N (2009) Fatigue creep damage at the cement-bone interface: an experimental and a micro-mechanical finite element study. J Biomech 42(15):2513–2519

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nguyen TT, Yvonnet J, Zhu QZ, Bornert M, Chateau C (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Eng Fract Mech 139:18–39

    Article  Google Scholar 

  22. Remmers JJ, de Borst R, Needleman A (2008) The simulation of dynamic crack propagation using the cohesive segments method. J Mech Phys Solids 56(1):70–92

    Article  Google Scholar 

  23. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Num Methods Eng 46(1):131–150

    Article  Google Scholar 

  24. Ghorashi SS, Valizadeh N, Mohammadi S, Rabczuk T (2015) T-spline based xiga for fracture analysis of orthotropic media. Comput Struct 147:138–146

    Article  Google Scholar 

  25. Natarajan S, Annabattula RK, Martínez-Pañeda E et al (2019) Phase field modelling of crack propagation in functionally graded materials. Compos Part B: Eng 169:239–248

    Article  Google Scholar 

  26. Ambati M, Gerasimov T, De Lorenzis L (2015) Phase-field modeling of ductile fracture. Comput Mech 55(5):1017–1040

    Article  Google Scholar 

  27. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45–48):2765–2778

    Article  Google Scholar 

  28. Wu JY, Nguyen VP, Nguyen CT, Sutula D, Bordas S, Sinaie S (2018) Phase field modeling of fracture. Advances in applied mechancis: multi-scale theory and computation 52

  29. de Borst R, Verhoosel CV (2016) Gradient damage vs phase-field approaches for fracture: similarities and differences. Comput Methods Appl Mech Eng 312:78–94

    Article  Google Scholar 

  30. Goswami S, Anitescu C, Chakraborty S, Rabczuk T (2020) Transfer learning enhanced physics informed neural network for phase-field modeling of fracture. Theor Appl Fract Mech 106:102447

    Article  Google Scholar 

  31. Msekh MA, Cuong N, Zi G, Areias P, Zhuang X, Rabczuk T (2018) Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model. Eng Fract Mech 188:287–299

    Article  Google Scholar 

  32. Maghami E, Moore JP, Josephson TO, Najafi AR (2022) Damage analysis of human cortical bone under compressive and tensile loadings. Comput Methods Biomech Biomed Eng 25(3):342–357

    Article  Google Scholar 

  33. Josephson TO, Moore JP, Maghami E, Freeman TA, Najafi AR (2022) Computational study of the mechanical influence of lacunae and perilacunar zones in cortical bone microcracking. J Mech Behav Biomed Mater 126:105029

    Article  PubMed  Google Scholar 

  34. Maghami E, Josephson TO, Moore JP, Rezaee T, Freeman TA, Karim L et al (2021) Fracture behavior of human cortical bone: role of advanced glycation end-products and microstructural features. J Biomech 125:110600

    Article  PubMed  Google Scholar 

  35. Maghami E, Pejman R, Najafi AR (2021) Fracture micromechanics of human dentin: a microscale numerical model. J Mech Behav Biomed Mater 114:104171

    Article  CAS  PubMed  Google Scholar 

  36. Nguyen L, Stoter S, Baum T, Kirschke J, Ruess M, Yosibash Z et al (2017) Phase-field boundary conditions for the voxel finite cell method: surface-free stress analysis of ct-based bone structures. Int J Numer Methods Biomed Eng 33(12):e2880

    Article  Google Scholar 

  37. Maghami E, Najafi AR (2022) Influence of age-related changes on crack growth trajectories and toughening mechanisms in human dentin. Dent Mater 38(11):1789–1800

    Article  CAS  PubMed  Google Scholar 

  38. Wu C, Fang J, Zhang Z, Entezari A, Sun G, Swain MV et al (2020) Fracture modeling of brittle biomaterials by the phase-field method. Eng Fract Mech 224:106752

    Article  Google Scholar 

  39. Pinto DC, Pace ED (2015) A silver-stain modification of standard histological slide preparation for use in anthropology analyses. J Forensic Sci 60(2):391–398

    Article  PubMed  Google Scholar 

  40. Gustafsson A, Khayyeri H, Wallin M, Isaksson H (2019) An interface damage model that captures crack propagation at the microscale in cortical bone using xfem. J Mech Behav Biomed Mater 90:556–565

    Article  PubMed  Google Scholar 

  41. Saffar KP, Najafi AR, Moeinzadeh MH, Sudak LJ (2013) A finite element study of crack behavior for carbon nanotube reinforced bone cement. World J Mech 3(5A):13–21

    Article  Google Scholar 

  42. Abdel-Wahab AA, Maligno AR, Silberschmidt VV (2012) Micro-scale modelling of bovine cortical bone fracture: analysis of crack propagation and microstructure using x-fem. Comput Mater Sci 52(1):128–135

    Article  Google Scholar 

  43. Fan Z, Swadener J, Rho J, Roy M, Pharr G (2002) Anisotropic properties of human tibial cortical bone as measured by nanoindentation. J Orthop Res 20(4):806–810

    Article  CAS  PubMed  Google Scholar 

  44. Fratzl P, Gupta H, Paschalis E, Roschger P (2004) Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem 14(14):2115–2123

    Article  CAS  Google Scholar 

  45. Giner E, Belda R, Arango C, Vercher-Martínez A, Tarancón JE, Fuenmayor FJ (2017) Calculation of the critical energy release rate gc of the cement line in cortical bone combining experimental tests and finite element models. Eng Fract Mech 184:168–182

    Article  Google Scholar 

  46. Brown CU, Yeni YN, Norman TL (2000) Fracture toughness is dependent on bone location–a study of the femoral neck, femoral shaft, and the tibial shaft. J Biomed Mater Res: Off J Soc Biomater Jpn Soc Biomater 49(3):380–389

    Article  CAS  Google Scholar 

  47. Tang S, Vashishth D (2011) The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of aging bone. J Biomech 44(2):330–336

    Article  CAS  PubMed  Google Scholar 

  48. Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. J Elast 91(1–3):5–148

    Article  Google Scholar 

  49. Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theor Appl Fract Mech 107:102446

    Article  Google Scholar 

  50. Alessi R, Vidoli S, De Lorenzis L (2018) A phenomenological approach to fatigue with a variational phase-field model: the one-dimensional case. Eng Fract Mech 190:53–73

    Article  Google Scholar 

  51. Carrara P, Ambati M, Alessi R, De Lorenzis L (2020) A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Comput Methods Appl Mech Eng 361:112731

    Article  Google Scholar 

  52. Burr DB (2019) Changes in bone matrix properties with aging. Bone 120:85–93

    Article  CAS  PubMed  Google Scholar 

  53. Li J, Gong H (2021) Fatigue behavior of cortical bone: a review. Acta Mech Sinica 37(3):516–526

  54. Varvani-Farahani A, Najmi H (2010) A damage assessment model for cadaveric cortical bone subjected to fatigue cycles. Int J Fatigue 32(2):420–427

    Article  CAS  Google Scholar 

  55. Taylor D (2018) Observations on the role of fracture mechanics in biology and medicine. Eng Fract Mech 187:422–430

    Article  Google Scholar 

  56. Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nature Mater 14(1):23–36

    CAS  Google Scholar 

  57. Carter D, Hayes WC, Schurman DJ (1976) Fatigue life of compact bone–ii. effects of microstructure and density. J Biomech 9(4):211-218

    Article  CAS  PubMed  Google Scholar 

  58. Poundarik AA, Wu PC, Evis Z, Sroga GE, Ural A, Rubin M et al (2015) A direct role of collagen glycation in bone fracture. J Mech Behav Biomed Mater 52:120–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Carando S, Barbos MP, Ascenzi A, Boyde A (1989) Orientation of collagen in human tibial and fibular shaft and possible correlation with mechanical properties. Bone 10(2):139–142

    Article  CAS  PubMed  Google Scholar 

  60. Mischinski S, Ural A (2013) Interaction of microstructure and microcrack growth in cortical bone: a finite element study. Comput Methods Biomech Biomed Eng 16(1):81–94

    Article  Google Scholar 

  61. Budyn E, Hoc T, Jonvaux J (2008) Fracture strength assessment and aging signs detection in human cortical bone using an x-fem multiple scale approach. Comput Mech 42(4):579–591

    Article  Google Scholar 

  62. Li S, Abdel-Wahab A, Demirci E, Silberschmidt VV (2014) Fracture process in cortical bone: X-fem analysis of microstructured models. In: Fracture phenomena in nature and technology Springer, pp 43–55

Download references

Acknowledgements

The authors acknowledge the high-performance computing resources (Picotte: the Drexel Cluster) and support at Drexel University. We are grateful to Timothy O. Josephson and Jason P. Moore for the sectioning, staining, and imaging of bone samples. We also thank Dr. Lamya Karim and Taraneh Rezaee at the University of Massachusetts Dartmouth for providing and cutting the cortical bone samples. We further thank Dr. Theresa A. Freeman for providing us with the laboratory facilities of Thomas Jefferson University. We also thank Mr. Amirreza Sadighi for his helpful comments on the manuscript writing style.

Funding

This study was supported by faculty start-up funding from the Department of Mechanical Engineering and Mechanics at Drexel University. The development of the fatigue fracture framework is also supported by the NSF CAREER Award CMMI-2143422.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Najafi.

Ethics declarations

Informed consent

N/A.

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors. All reported studies/experiments with human subjects performed by the authors have been previously published and complied with all applicable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Graphical abstract image was incorrect.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maghami, E., Najafi, A. Microstructural fatigue fracture behavior of glycated cortical bone. Med Biol Eng Comput 61, 3021–3034 (2023). https://doi.org/10.1007/s11517-023-02901-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02901-3

Keywords

Navigation