Skip to main content
Log in

3DCNN predicting brain age using diffusion tensor imaging

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Neuroimaging-based brain age prediction using deep learning is gaining popularity. However, few studies have attempted to leverage diffusion tensor imaging (DTI) to predict brain age. In this study, we proposed a 3D convolutional neural network model (3DCNN) and trained it on fractional anisotropy (FA) data from six publicly available datasets (n = 2406, age = 17–60) to estimate brain age. Implementing a two-loop nested cross-validation scheme with a tenfold cross-validation procedure, we achieved a robust prediction performance of a mean absolute error (MAE) of 2.785 and a correlation coefficient of 0.932. We also employed Grad-Cam++ to visualize the salient features of the proposed model. We identified a few highly salient fiber tracts, including the genu of corpus callosum and the left cerebellar peduncle, among others that play a pivotal role in our model. In sum, our model reliably predicted brain age and provided novel insight into age-related changes in brains’ axonal structure.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O’Sullivan M et al (2001) Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology 57:4. https://doi.org/10.1212/WNL.57.4.632

    Article  Google Scholar 

  2. Greicius MD et al (2018) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceed Nat Acad Sci United States of America 100(1):253–258. https://doi.org/10.1073/pnas.0135058100

    Article  CAS  Google Scholar 

  3. Davis SW et al (2009) Assessing the effects of age on long white matter tracts using diffusion tensor tractography. Neuroimage 46(2):530–541. https://doi.org/10.1016/j.neuroimage.2009.01.068

    Article  PubMed  Google Scholar 

  4. Cole JH et al (2019) Brain age and other bodily “ages”: implications for neuropsychiatry. Molecular Psychiatry 24:266–281. https://doi.org/10.1038/s41380-018-0098-1

    Article  PubMed  Google Scholar 

  5. Huang TW et al (2017) Age estimation from brain MRI images using deep learning. in IEEE International Symposium on Biomedical Imaging. https://doi.org/10.1109/ISBI.2017.7950650

  6. Cherubini A et al (2016) Importance of multimodal MRI in characterizing brain tissue and its potential application for individual age prediction. Biomed Health Informatics, IEEE J 20(5):1232–1239. https://doi.org/10.1109/jbhi.2016.2559938

    Article  Google Scholar 

  7. Abrol A et al (2021) Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning. Nature Comm 12(1):1–17. https://doi.org/10.1038/s41467-020-20655-6

    Article  CAS  Google Scholar 

  8. Sarker IH (2021) Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN computer science 2(6):420. https://doi.org/10.20944/preprints202108.0060.v1

  9. Xin J et al (2019) Brain differences between men and women: evidence from deep learning. Front neurosci 13:185. https://doi.org/10.3389/fnins.2019.00185

    Article  PubMed  PubMed Central  Google Scholar 

  10. Feng X et al (2019) Estimating brain age based on a healthy population with deep learning and structural MRI. arXiv preprint arXiv:1907.00943. https://doi.org/10.48550/arXiv.1907.00943.

  11. Cole JH et al (2017) Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. NeuroImage 163:115–124. https://doi.org/10.1016/j.neuroimage.2017.07.059

    Article  PubMed  Google Scholar 

  12. Feng X et al (2020) Estimating brain age based on a healthy population with deep learning and structural MRI. arXiv preprint arXiv:1907.00943. https://doi.org/https://doi.org/10.1016/j.neurobiolaging.2020.02.009

  13. Jiang H et al (2020) Predicting brain age of healthy adults based on structural MRI parcellation using convolutional neural networks. Front Neurol 10:1346. https://doi.org/10.3389/fneur.2019.01346

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wood DA et al (2022) Accurate brain-age models for routine clinical MRI examinations. Neuroimage 249:118871. https://doi.org/10.1016/j.neuroimage.2022.118871

    Article  PubMed  Google Scholar 

  15. Peng H et al (2021) Accurate brain age prediction with lightweight deep neural networks. Medical image analysis 68:101871. https://doi.org/10.1016/j.media.2020.101871.

  16. Levakov G et al (2020) From a deep learning model back to the brain—Identifying regional predictors and their relation to aging. Human brain mapping 41(12):3235–3252. https://doi.org/10.1002/hbm.25011

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sexton CE et al (2014) Accelerated changes in white matter microstructure during aging: a longitudinal diffusion tensor imaging study. J Neurosci 34(46):15425–15436. https://doi.org/10.1523/jneurosci.0203-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cox SR et al (2016) Ageing and brain white matter structure in 3,513 UK Biobank participants. Nature Comm 7(1):1–13. https://doi.org/10.1038/ncomms13629

    Article  CAS  Google Scholar 

  19. Beck D et al (2021) White matter microstructure across the adult lifespan: a mixed longitudinal and cross-sectional study using advanced diffusion models and brain-age prediction. NeuroImage 224:117441. https://doi.org/10.1016/j.neuroimage.2020.117441

    Article  PubMed  Google Scholar 

  20. Chattopadhyay A et al (2018) Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. IEEE: 839–847. https://doi.org/10.1109/WACV.2018.00097

  21. Mayer AR et al (2013) Functional imaging of the hemodynamic sensory gating response in schizophrenia. Human Brain Mapping 34(9):2302–2312. https://doi.org/10.1002/hbm.22065

    Article  PubMed  Google Scholar 

  22. Yan C et al (2011) Sex-and brain size–related small-world structural cortical networks in young adults: a DTI tractography study. Cerebral cortex 21(2):449–458. https://doi.org/10.1093/cercor/bhq111

    Article  PubMed  Google Scholar 

  23. Shafto MA et al (2014) The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing. BMC neurology 14(1):1–25. https://doi.org/10.1186/s12883-014-0204-1

    Article  Google Scholar 

  24. Van Essen DC et al (2013) The WU-Minn human connectome project: an overview. Neuroimage 80:62–79. https://doi.org/10.1016/j.neuroimage.2013.05.041

    Article  PubMed  Google Scholar 

  25. Liu W et al (2017) Longitudinal test-retest neuroimaging data from healthy young adults in southwest China. Scientific data 4(1):1–9. https://doi.org/10.1038/sdata.2017.17

    Article  Google Scholar 

  26. Marek K et al (2011) The Parkinson progression marker initiative (PPMI). Progress in neurobiology 95(4):629–635. https://doi.org/10.1212/wnl.78.1_meetingabstracts.p06.083

    Article  PubMed Central  Google Scholar 

  27. Jenkinson M et al (2012) Fsl. Neuroimage 62(2):782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015

  28. Smith SM et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4):1487–1505. https://doi.org/10.1016/j.neuroimage.2006.02.024

    Article  PubMed  Google Scholar 

  29. Mori S et al (2006) MRI atlas of human white matter. Am JNeuroradiol 7(6):1384

    Google Scholar 

  30. Chen L-C et al (2017) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Transact Pattern Anal Machine Intelligence 40(4):834–848. https://doi.org/10.1109/tpami.2017.2699184

    Article  Google Scholar 

  31. Varoquaux G et al (2017) Assessing and tuning brain decoders: cross-validation, caveats, and guidelines. NeuroImage 145:166–179. https://doi.org/10.1016/j.neuroimage.2016.10.038

    Article  PubMed  Google Scholar 

  32. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980. https://doi.org/https://doi.org/10.48550/arXiv.1412.6980

  33. Abadi M et al (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467. https://doi.org/https://doi.org/10.48550/arXiv.1603.04467

  34. Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 44(1):83–98. https://doi.org/10.1016/j.neuroimage.2008.03.061

    Article  PubMed  Google Scholar 

  35. Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Comm Statistics-Theory Methods 3(1):1–27. https://doi.org/10.1080/03610927408827101

    Article  Google Scholar 

  36. He K et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  37. Bennett IJ, Madden DJ (2014) Disconnected aging: cerebral white matter integrity and age-related differences in cognition. Neuroscience 276:187–205. https://doi.org/10.1016/j.neuroscience.2013.11.026

    Article  CAS  PubMed  Google Scholar 

  38. Giorgio A et al (2010) Age-related changes in grey and white matter structure throughout adulthood. Neuroimage 51(3):943–951. https://doi.org/10.1016/j.neuroimage.2010.03.004

    Article  PubMed  Google Scholar 

  39. Marstaller L et al (2015) Aging and large-scale functional networks: white matter integrity, gray matter volume, and functional connectivity in the resting state. Neuroscience 290:369–378. https://doi.org/10.1016/j.neuroscience.2015.01.049

    Article  CAS  PubMed  Google Scholar 

  40. Mwangi B, Hasan KM, Soares JC (2013) Prediction of individual subject’s age across the human lifespan using diffusion tensor imaging: a machine learning approach. Neuroimage 75:58–67. https://doi.org/10.1016/j.neuroimage.2013.02.055

    Article  PubMed  Google Scholar 

  41. Knyazeva MG (2013) Splenium of corpus callosum: patterns of interhemispheric interaction in children and adults. Neural plasticity 2013:1–12. https://doi.org/10.1155/2013/639430

    Article  Google Scholar 

  42. Kanaan RA et al (2016) White matter microstructural organization is higher with age in adult superior cerebellar peduncles. Frontiers Aging Neurosci 8:71. https://doi.org/10.3389/fnagi.2016.00071

    Article  Google Scholar 

  43. Raghavan S et al (2020) Reduced fractional anisotropy of the genu of the corpus callosum as a cerebrovascular disease marker and predictor of longitudinal cognition in MCI. Neurobiology Aging 96:176–183. https://doi.org/10.1016/j.neurobiolaging.2020.09.005

    Article  CAS  Google Scholar 

  44. Fellgiebel A et al (2008) Functional relevant loss of long association fibre tracts integrity in early Alzheimer’s disease. Neuropsychologia 46(6):1698–1706. https://doi.org/10.1016/j.neuropsychologia.2007.12.010

    Article  PubMed  Google Scholar 

  45. Pareek V, Rallabandi VS, Roy PK (2018) A Correlational study between microstructural white matter properties and macrostructural gray matter volume across normal ageing: conjoint DTI and VBM analysis. Magnetic Resonance Insights. https://doi.org/10.1177/1178623x18799926

  46. Chiang M-C et al (2011) BDNF gene effects on brain circuitry replicated in 455 twins. Neuroimage 55(2):448–454. https://doi.org/10.1016/j.neuroimage.2010.12.053

    Article  CAS  PubMed  Google Scholar 

  47. Lebel C, Beaulieu C (2011) Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci 31(30):10937–10947. https://doi.org/10.1523/jneurosci.5302-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kochunov P et al (2009) Loss of cerebral white matter structural integrity tracks the gray matter metabolic decline in normal aging. Neuroimage 45(1):17–28. https://doi.org/10.1016/j.neuroimage.2008.11.010

    Article  CAS  PubMed  Google Scholar 

  49. Glahn DC et al (2013) Genetic basis of neurocognitive decline and reduced white-matter integrity in normal human brain aging. Proceed Nat Acad Sci 110(47):19006–19011. https://doi.org/10.1073/pnas.1313735110

    Article  CAS  Google Scholar 

  50. Kochunov P et al (2009) Analysis of genetic variability and whole genome linkage of whole-brain, subcortical, and ependymal hyperintense white matter volume. Stroke 40(12):3685–3690. https://doi.org/10.1161/strokeaha.109.565390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bendlin BB et al (2010) White matter in aging and cognition: a cross-sectional study of microstructure in adults aged eighteen to eighty-three. Developmental Neuropsychol 35(3):257–277. https://doi.org/10.1080/87565641003696775

    Article  Google Scholar 

  52. Chen C-L et al (2020) Generalization of diffusion magnetic resonance imaging–based brain age prediction model through transfer learning. NeuroImage 217:116831. https://doi.org/10.1016/j.neuroimage.2020.116831

    Article  PubMed  Google Scholar 

  53. Kumar R et al (2013) Brain axial and radial diffusivity changes with age and gender in healthy adults. Brain research 1512:22–36. https://doi.org/10.1016/j.brainres.2013.03.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Niu X et al (2020) Improved prediction of brain age using multimodal neuroimaging data. Human brain mapping 41(6):1626–1643. https://doi.org/10.1002/hbm.24899

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Data used in this article were obtained from the Center Of Biomedical Research Excellence (COBRE, available at http://schizconnect.org/), the Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning Enhanced Sample (Beijing-Enhanced, available at http://fcon_1000.projects.nitrc.org/indi/retro/BeijingEnhanced.html), the Cambridge Centre for Ageing and Neuroscience (Cam-CAN, available at https://www.cam-can.org/index.php?content=dataset), the Human Connectome Project (HCP, available at http://db.humanconnectome.org/), the Parkinson’s Progression Markers Initiative (PPMI, available at https://ida.loni.usc.edu/login.jsp?project=&page=HOME), and the Southwest University Longitudinal Imaging Multimodal Brain Data Repository (SLIM, available at http://fcon_1000.projects.nitrc.org/indi/retro/southwestuni_qiu_index.html).

This work was supported in part by the High Performance Computing Center of Central South University.

Funding

YT is supported by grant MIMS20-08 from the Research Fund of Guangxi Key Lab of Multi-source Information Mining & Security.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Xie or Yan Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wen, J., Xin, J. et al. 3DCNN predicting brain age using diffusion tensor imaging. Med Biol Eng Comput 61, 3335–3344 (2023). https://doi.org/10.1007/s11517-023-02915-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02915-x

Keywords

Navigation