Skip to main content

Advertisement

Log in

Bone samples’ behavior in sunlight, IR light, and temperature increase with FEM simulation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Biological and environmental factors produce biochemical processes that modify the bone structure. A few studies have attempted to show the adverse biological effects of sun radiation. The bone tissue exposures to infrared and sunlight radiation are analyzed by using focused sound, characterization spectroscopy techniques, and image processing. The study is complemented with a finite element method simulation on temperature behaviors. The crystal morphology on the bone hydroxyapatite and functional groups was characterized by X-ray diffraction and infrared spectroscopy. The infrared spectra confirmed the hydroxyl group of bovine hydroxyapatite, amines, and lipids are also correlated with modifications of the hydroxyapatite. The diffractograms showed the characteristic peaks of hydroxyapatite, with the main intensity at 2θ = 32.02°. Bone samples exposed to sun radiation presented a peak at 2θ = 27.5°, evidencing the possible formation of β-TCP y α-TCP. The analysis with the spectroscopy techniques about the structural changes in the samples suggests interpreting an increase of sound obtained by expanding the exposure time. It is possible to verify that there are some structural changes in the bone samples due to exposure to non-ionizing radiation. These results show an increase in the registered intensity sound correlated with the interpretation of the structural changes of bone. Thanks to the different novel analysis techniques established in the present study, it could establish the changes that experienced the bone structure under different sources of radiation, which will help to better detect scenarios of bone deficiency.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Guede D, González P, Caeiro JR (2013) Biomecánica y hueso (I): Conceptos básicos y ensayos mecánicos clásicos. Revista de Osteoporosis y Metabolismo Mineral 5:43–50. https://doi.org/10.4321/s1889-836x2013000100008

    Article  Google Scholar 

  2. Biological and medical significance of calcium phosphates. Accessed 25 May 2022. https://onlinelibrary.wiley.com/doi/epdf/ https://doi.org/10.1002/1521-3773%2820020902%2941%3A17%3C3130%3A%3AAID-ANIE3130%3E3.0.CO%3B2-1

  3. García-Garduño MV, Reyes-Gasga J (2006) La hidroxiapatita, su importancia en los tejidos mineralizados y su aplicación biomédica. TIP Rev Esp Cienc Quim Biol 9(2):90–95

    Google Scholar 

  4. Ruksudjarit A, Pengpat K, Rujijanagul G, Tunkasiri T (2008) Synthesis and characterization of nanocrystalline hydroxyapatite from natural bovine bone. Curr Appl Phys. https://doi.org/10.1016/j.cap.2007.10.076

    Article  Google Scholar 

  5. Rubin MA, Rubin J, Jasiuk I (2004) SEM and TEM study of the hierarchical structure of C57BL/6J and C3H/HeJ mice trabecular bone. Bone 35:11–20. https://doi.org/10.1016/j.bone.2004.02.008

    Article  PubMed  Google Scholar 

  6. Tzaphlidou M (2008) Bone architecture: collagen structure and calcium/phosphorus maps. J Biol Phys 34:39–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Silva MJ (2007) Biomechanics of osteoporotic fractures. Injury 38:69–76. https://doi.org/10.1016/j.injury.2007.08.014

    Article  Google Scholar 

  8. Luo Y, Wu X (2020) Bone quality is dependent on the quantity and quality of organic–inorganic phases. Journal of Medical and Biological Engineering 40:273–281. https://doi.org/10.1007/s40846-020-00506-x

    Article  Google Scholar 

  9. Kopiczko A (2020) Determinants of bone health in adults Polish women: the influence of physical activity, nutrition, sun exposure and biological factors. https://doi.org/10.1371/journal.pone.0238127

  10. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. The Lancet 359:1761–1767. https://doi.org/10.1016/S0140-6736(02)08657-9

    Article  Google Scholar 

  11. Kanis JA, Melton LJ, Christiansen C et al (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141. https://doi.org/10.1002/jbmr.5650090802

    Article  PubMed  CAS  Google Scholar 

  12. Nayak S, Olkin I, Liu H, Grabe M, Gould MK, Allen IE, ... Bravata DM (2006) Meta-analysis: accuracy of quantitative ultrasound for identifying patients with osteoporosis. Ann Intern Med 144(11):832–841

  13. Grimal Q, Laugier P (2019) Quantitative ultrasound assessment of cortical bone properties beyond bone mineral density. IRBM 40:16–24

    Article  Google Scholar 

  14. Mano I, Yamamoto T, Hagino H, et al (2007) Ultrasonic transmission characteristics of in vitro human cancellous bone. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers. https://doi.org/10.1143/JJAP.46.4858

  15. Glüer C-C (1997) Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. J Bone Miner Res 12:1280–1288. https://doi.org/10.1359/jbmr.1997.12.8.1280

    Article  PubMed  Google Scholar 

  16. Barkmann R, Laugier P, Moser U et al (2007) A method for the estimation of femoral bone mineral density from variables of ultrasound transmission through the human femur. Bone. https://doi.org/10.1016/j.bone.2006.07.010

    Article  PubMed  Google Scholar 

  17. Nagatani Y, Imaizumi H, Fukuda T, et al (2006) Applicability of finite-difference time-domain method to simulation of wave propagation in cancellous bone. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers. https://doi.org/10.1143/JJAP.45.7186

  18. Droin P, Berger G, Laugier P (1998) Velocity dispersion of acoustic waves in cancellous bone. IEEE Trans Ultrason Ferroelectr Freq Control 45:581–592. https://doi.org/10.1109/58.677603

    Article  PubMed  CAS  Google Scholar 

  19. Laugier P (2011) Bone quantitative ultrasound. France, Paris

    Book  Google Scholar 

  20. Elastic waves in solids I: free and guided propagation - DANIEL ROYER, Eugene Dieulesaint - Google Books. Accessed 16 Apr 2021, https://books.google.com.mx/books?hl=en&lr=&id=SzwQ1UYspyQC&oi=fnd&pg=PA1&dq=D.+Royer+and+E.+Dieulesaint,+Elastic+Waves+in+Solids+I+(Springer,+New+York,+2000).&ots=WKZAy1wqJP&sig=xog3zOsgQYGbe9fmvvcCV77k9QI&redir_esc=y#v=onepage&q=D. Royer and E. Dieulesaint%2C Elastic Waves in Solids I (Springer%2C New York%2C 2000).&f=false.

  21. Hughes S (2001) Medical ultrasound imaging. Phys Educ 36:468–475. https://doi.org/10.1088/0031-9120/36/6/304

    Article  Google Scholar 

  22. Martínez Rodríguez JA, VitolaOyaga J, del Sandoval Cantor S, P, (2007) Fundamentos teórico-prácticos del ultrasonido. Tecnura 10:4–18. https://doi.org/10.14483/22487638.6256

    Article  Google Scholar 

  23. Pineda C, De S, Bernal A, Espinosa R, Hernández C, Marín N, Peña AH, Rodríguez PJ, Solano C (2009) Principios Físicos Básicos del Ultrasonido. Rev Chil Reumatol 25(2):60–66

    Google Scholar 

  24. Glüer CC, Eastell R, Reid DM et al (2004) Association of five quantitative ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population-based sample: The OPUS Study. J Bone Miner Res. https://doi.org/10.1359/JBMR.040304

    Article  PubMed  Google Scholar 

  25. Wear KA (2000) The effects of frequency-dependent attenuation and dispersion on sound speed measurements: applications in human trabecular bone. IEEE Trans Ultrason Ferroelectr Freq Control. https://doi.org/10.1109/58.818770

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rožman B, Bencetić Klaić Z, Škreb F (2003) Influence of the incoming solar radiation on the bone mineral density in the female adult population in Croatia. Coll Antropol 27:285–292

    PubMed  Google Scholar 

  27. Juzeniene A, Brekke P, Dahlback A, et al (2011) Solar radiation and human health. Reports on Progress in Physics 74. https://doi.org/10.1088/0034-4885/74/6/066701

  28. Padilla-Raygoza N, Medina-Alvarez D, Ruiz-Paloalto ML et al (2014) Diagnosis of developmental dysplasia of the hip using sound transmission in neonates. Health. https://doi.org/10.4236/health.2014.618289

    Article  Google Scholar 

  29. Padilla-Raygoza N, Olvera-Villanueva G, del Carmen D-S et al (2017) Validity and reliability of electroacoustic probe for diagnosis of developmental dysplasia of the hip. BMC Pediatr. https://doi.org/10.1186/s12887-017-0903-z

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cordova-Fraga T, Hernandez-Gonzalez MA, Hernandez-Rayas A, Ponce-Covarrubias DA (2020) Use of an electroacoustic device and bone densitometry in the diagnosis of osteoporosis: utility, validation, and comparison. Open Journal of Applied Sciences. https://doi.org/10.4236/ojapps.2020.105016

    Article  Google Scholar 

  31. Gilmore RS, Katz JL (1982) Elastic properties of apatites. J Mater Sci 17:1131–1141. https://doi.org/10.1007/BF00543533

    Article  CAS  Google Scholar 

  32. Selçuk T, Alkan A (2019) Detection of microaneurysms using ant colony algorithm in the early diagnosis of diabetic retinopathy. Med Hypotheses. https://doi.org/10.1016/j.mehy.2019.109242

    Article  PubMed  Google Scholar 

  33. Sunnetci KM, Alkan A (2023) Biphasic majority voting-based comparative COVID-19 diagnosis using chest X-ray images. Expert Syst Appl 216:. https://doi.org/10.1016/j.eswa.2022.119430

  34. Guerra MAV, Felipe NAT (2017) Combination of osteotecnia and preservation of muscles in unique assembly of canis lupus familiaris. Int J Morphol 35(1):351–357

    Google Scholar 

  35. Koutromanos I (2018) Fundamentals of finite element analysis: linear finite element analysis. John Wiley & Sons

    Google Scholar 

  36. Multiphysics C, Application T, License CA parasol and solar irradiation. https://www.comsol.com/model/sun-s-radiation-effect-on-two-coolers-placed-under-a-parasol-12825

  37. Wang X, Zhang L, Liu Z et al (2018) Probing the surface structure of hydroxyapatite through its interaction with hydroxyl: a first-principles study. RSC Adv 8:3716–3722. https://doi.org/10.1039/c7ra13121f

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Rey C, Miquel JL, Facchini L et al (1995) Hydroxyl groups in bone mineral. Bone 16:583–586. https://doi.org/10.1016/8756-3282(95)00101-I

    Article  PubMed  CAS  Google Scholar 

  39. Sudiono S, Yuniarti M, Siswanta D et al (2017) The role of carboxyl and hydroxyl groups of humic acid in removing AuCl4– from aqueous solution. Indonesian Journal of Chemistry 17:95–104. https://doi.org/10.22146/ijc.23620

    Article  CAS  Google Scholar 

  40. Miculescu F, Stan GE, Ciocan LT et al (2012) Cortical bone as resource for producing biomimetic materials for clinical use. Dig J Nanomater Biostruct 7(4):1667–1677

    Google Scholar 

  41. Artioli G X X-RAY DIFFRACTION (XRD). https://doi.org/10.1007/978-1-4020-4409-0

  42. Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporosis International. Springer, London, pp 1013–1021

    Google Scholar 

  43. Adele B (2003) Bone mineral crystal size. Osteoporos Int 5:16–20. https://doi.org/10.1007/s00198-003-1468-2

    Article  Google Scholar 

  44. Yamamoto K, Yaoi Y, Yamato Y et al (2008) Ultrasonic wave properties in bone axis direction of bovine cortical bone. Jpn J Appl Phys. https://doi.org/10.1143/JJAP.47.4096

    Article  Google Scholar 

  45. Hydroxyapatite | Ca5HO13P3 - PubChem. Accessed 1st Jul 2021 https://pubchem.ncbi.nlm.nih.gov/compound/Hydroxyapatite.

  46. Rincón M, Rodríguez Martínez J, LondoñoLópez M, Echevarría A (2007) Fabricación y caracterización de una matriz tridimensional de hidroxiapatita macroporosa para aplicación en ingeniería de tejidos óseos. Revista EIA. https://doi.org/10.24050/reia.v4i7.173

    Article  Google Scholar 

  47. Held, Kathryn D (2006) Radiobiology for the radiologist, by Eric J. Hall and Amato J. Giaccia. 816–817

  48. Willey JS, Lloyd SA, Nelson GA, Bateman TA (2011) Space radiation and bone loss. Gravitational and space biology bulletin: publication of the American Society for Gravitational and Space Biology 25(1):14

    PubMed  Google Scholar 

  49. Martínez Ramírez E, Quiroz Garcés A, Velasco Villareal R, de la Rosa Orea G, González Pérez M (2011) Síntesis y análisis de la biocompatibilidad y osteoconductividad de un composito hidroxiapatita/colágeno, implantado en el sacro de un perro. Revista Mexicana de Ingeniería Biomédica 32(2):119–124

  50. Guadarrama Bello D, López Hernández M, Brizuela Guerra N (2011) Determinación de propiedades mecánicas y temperatura máxima de polimerización de cementos óseos acrílicos modificados con micro y nanopartículas de hidroxiapatita. Revista Latinoamericana de Metalurgia y Materiales 31(1):91–98

    Google Scholar 

  51. Silva Y, Delvasto S (2016) Características físicas y mecánicas de porcelanas dentales feldespáticas empleando hueso bovino como reemplazo del feldespato. Revista Latinoamericana de Metalurgia y Materiales 36(1):61–69

    Google Scholar 

Download references

Funding

The authors thank Universidad de Guanajuato for the partial support for this work under grant number DAIP/2023–59023.

Author information

Authors and Affiliations

Authors

Contributions

Marysol García-Pérez material preparation, data collection, analysis, writing-review, and editing. Angélica Hernández-Rayas software, formal analysis and investigation and writing—review, and editing. Christian Gómez-Solis conceptualization, methodology, validation and writing—review, and editing. José Alfredo SOTO-ÁLVAREZ software, formal analysis and writing—review, and editing. Jorge Oliva validation, formal analysis, and writing—review and editing. Teodoro Córdova-Fraga validation, writing—review, and editing and supervision. The first draft of the manuscript was written by Marysol García-Pérez and Angélica Hernández-Rayas and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Teodoro Córdova-Fraga.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Córdova-Fraga, T., García-Pérez, M., Hernández-Rayas, A. et al. Bone samples’ behavior in sunlight, IR light, and temperature increase with FEM simulation. Med Biol Eng Comput 62, 225–236 (2024). https://doi.org/10.1007/s11517-023-02929-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02929-5

Keywords

Navigation