Abstract
Biological and environmental factors produce biochemical processes that modify the bone structure. A few studies have attempted to show the adverse biological effects of sun radiation. The bone tissue exposures to infrared and sunlight radiation are analyzed by using focused sound, characterization spectroscopy techniques, and image processing. The study is complemented with a finite element method simulation on temperature behaviors. The crystal morphology on the bone hydroxyapatite and functional groups was characterized by X-ray diffraction and infrared spectroscopy. The infrared spectra confirmed the hydroxyl group of bovine hydroxyapatite, amines, and lipids are also correlated with modifications of the hydroxyapatite. The diffractograms showed the characteristic peaks of hydroxyapatite, with the main intensity at 2θ = 32.02°. Bone samples exposed to sun radiation presented a peak at 2θ = 27.5°, evidencing the possible formation of β-TCP y α-TCP. The analysis with the spectroscopy techniques about the structural changes in the samples suggests interpreting an increase of sound obtained by expanding the exposure time. It is possible to verify that there are some structural changes in the bone samples due to exposure to non-ionizing radiation. These results show an increase in the registered intensity sound correlated with the interpretation of the structural changes of bone. Thanks to the different novel analysis techniques established in the present study, it could establish the changes that experienced the bone structure under different sources of radiation, which will help to better detect scenarios of bone deficiency.
Graphical Abstract
Similar content being viewed by others
References
Guede D, González P, Caeiro JR (2013) Biomecánica y hueso (I): Conceptos básicos y ensayos mecánicos clásicos. Revista de Osteoporosis y Metabolismo Mineral 5:43–50. https://doi.org/10.4321/s1889-836x2013000100008
Biological and medical significance of calcium phosphates. Accessed 25 May 2022. https://onlinelibrary.wiley.com/doi/epdf/ https://doi.org/10.1002/1521-3773%2820020902%2941%3A17%3C3130%3A%3AAID-ANIE3130%3E3.0.CO%3B2-1
García-Garduño MV, Reyes-Gasga J (2006) La hidroxiapatita, su importancia en los tejidos mineralizados y su aplicación biomédica. TIP Rev Esp Cienc Quim Biol 9(2):90–95
Ruksudjarit A, Pengpat K, Rujijanagul G, Tunkasiri T (2008) Synthesis and characterization of nanocrystalline hydroxyapatite from natural bovine bone. Curr Appl Phys. https://doi.org/10.1016/j.cap.2007.10.076
Rubin MA, Rubin J, Jasiuk I (2004) SEM and TEM study of the hierarchical structure of C57BL/6J and C3H/HeJ mice trabecular bone. Bone 35:11–20. https://doi.org/10.1016/j.bone.2004.02.008
Tzaphlidou M (2008) Bone architecture: collagen structure and calcium/phosphorus maps. J Biol Phys 34:39–49
Silva MJ (2007) Biomechanics of osteoporotic fractures. Injury 38:69–76. https://doi.org/10.1016/j.injury.2007.08.014
Luo Y, Wu X (2020) Bone quality is dependent on the quantity and quality of organic–inorganic phases. Journal of Medical and Biological Engineering 40:273–281. https://doi.org/10.1007/s40846-020-00506-x
Kopiczko A (2020) Determinants of bone health in adults Polish women: the influence of physical activity, nutrition, sun exposure and biological factors. https://doi.org/10.1371/journal.pone.0238127
Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. The Lancet 359:1761–1767. https://doi.org/10.1016/S0140-6736(02)08657-9
Kanis JA, Melton LJ, Christiansen C et al (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141. https://doi.org/10.1002/jbmr.5650090802
Nayak S, Olkin I, Liu H, Grabe M, Gould MK, Allen IE, ... Bravata DM (2006) Meta-analysis: accuracy of quantitative ultrasound for identifying patients with osteoporosis. Ann Intern Med 144(11):832–841
Grimal Q, Laugier P (2019) Quantitative ultrasound assessment of cortical bone properties beyond bone mineral density. IRBM 40:16–24
Mano I, Yamamoto T, Hagino H, et al (2007) Ultrasonic transmission characteristics of in vitro human cancellous bone. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers. https://doi.org/10.1143/JJAP.46.4858
Glüer C-C (1997) Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. J Bone Miner Res 12:1280–1288. https://doi.org/10.1359/jbmr.1997.12.8.1280
Barkmann R, Laugier P, Moser U et al (2007) A method for the estimation of femoral bone mineral density from variables of ultrasound transmission through the human femur. Bone. https://doi.org/10.1016/j.bone.2006.07.010
Nagatani Y, Imaizumi H, Fukuda T, et al (2006) Applicability of finite-difference time-domain method to simulation of wave propagation in cancellous bone. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers. https://doi.org/10.1143/JJAP.45.7186
Droin P, Berger G, Laugier P (1998) Velocity dispersion of acoustic waves in cancellous bone. IEEE Trans Ultrason Ferroelectr Freq Control 45:581–592. https://doi.org/10.1109/58.677603
Laugier P (2011) Bone quantitative ultrasound. France, Paris
Elastic waves in solids I: free and guided propagation - DANIEL ROYER, Eugene Dieulesaint - Google Books. Accessed 16 Apr 2021, https://books.google.com.mx/books?hl=en&lr=&id=SzwQ1UYspyQC&oi=fnd&pg=PA1&dq=D.+Royer+and+E.+Dieulesaint,+Elastic+Waves+in+Solids+I+(Springer,+New+York,+2000).&ots=WKZAy1wqJP&sig=xog3zOsgQYGbe9fmvvcCV77k9QI&redir_esc=y#v=onepage&q=D. Royer and E. Dieulesaint%2C Elastic Waves in Solids I (Springer%2C New York%2C 2000).&f=false.
Hughes S (2001) Medical ultrasound imaging. Phys Educ 36:468–475. https://doi.org/10.1088/0031-9120/36/6/304
Martínez Rodríguez JA, VitolaOyaga J, del Sandoval Cantor S, P, (2007) Fundamentos teórico-prácticos del ultrasonido. Tecnura 10:4–18. https://doi.org/10.14483/22487638.6256
Pineda C, De S, Bernal A, Espinosa R, Hernández C, Marín N, Peña AH, Rodríguez PJ, Solano C (2009) Principios Físicos Básicos del Ultrasonido. Rev Chil Reumatol 25(2):60–66
Glüer CC, Eastell R, Reid DM et al (2004) Association of five quantitative ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population-based sample: The OPUS Study. J Bone Miner Res. https://doi.org/10.1359/JBMR.040304
Wear KA (2000) The effects of frequency-dependent attenuation and dispersion on sound speed measurements: applications in human trabecular bone. IEEE Trans Ultrason Ferroelectr Freq Control. https://doi.org/10.1109/58.818770
Rožman B, Bencetić Klaić Z, Škreb F (2003) Influence of the incoming solar radiation on the bone mineral density in the female adult population in Croatia. Coll Antropol 27:285–292
Juzeniene A, Brekke P, Dahlback A, et al (2011) Solar radiation and human health. Reports on Progress in Physics 74. https://doi.org/10.1088/0034-4885/74/6/066701
Padilla-Raygoza N, Medina-Alvarez D, Ruiz-Paloalto ML et al (2014) Diagnosis of developmental dysplasia of the hip using sound transmission in neonates. Health. https://doi.org/10.4236/health.2014.618289
Padilla-Raygoza N, Olvera-Villanueva G, del Carmen D-S et al (2017) Validity and reliability of electroacoustic probe for diagnosis of developmental dysplasia of the hip. BMC Pediatr. https://doi.org/10.1186/s12887-017-0903-z
Cordova-Fraga T, Hernandez-Gonzalez MA, Hernandez-Rayas A, Ponce-Covarrubias DA (2020) Use of an electroacoustic device and bone densitometry in the diagnosis of osteoporosis: utility, validation, and comparison. Open Journal of Applied Sciences. https://doi.org/10.4236/ojapps.2020.105016
Gilmore RS, Katz JL (1982) Elastic properties of apatites. J Mater Sci 17:1131–1141. https://doi.org/10.1007/BF00543533
Selçuk T, Alkan A (2019) Detection of microaneurysms using ant colony algorithm in the early diagnosis of diabetic retinopathy. Med Hypotheses. https://doi.org/10.1016/j.mehy.2019.109242
Sunnetci KM, Alkan A (2023) Biphasic majority voting-based comparative COVID-19 diagnosis using chest X-ray images. Expert Syst Appl 216:. https://doi.org/10.1016/j.eswa.2022.119430
Guerra MAV, Felipe NAT (2017) Combination of osteotecnia and preservation of muscles in unique assembly of canis lupus familiaris. Int J Morphol 35(1):351–357
Koutromanos I (2018) Fundamentals of finite element analysis: linear finite element analysis. John Wiley & Sons
Multiphysics C, Application T, License CA parasol and solar irradiation. https://www.comsol.com/model/sun-s-radiation-effect-on-two-coolers-placed-under-a-parasol-12825
Wang X, Zhang L, Liu Z et al (2018) Probing the surface structure of hydroxyapatite through its interaction with hydroxyl: a first-principles study. RSC Adv 8:3716–3722. https://doi.org/10.1039/c7ra13121f
Rey C, Miquel JL, Facchini L et al (1995) Hydroxyl groups in bone mineral. Bone 16:583–586. https://doi.org/10.1016/8756-3282(95)00101-I
Sudiono S, Yuniarti M, Siswanta D et al (2017) The role of carboxyl and hydroxyl groups of humic acid in removing AuCl4– from aqueous solution. Indonesian Journal of Chemistry 17:95–104. https://doi.org/10.22146/ijc.23620
Miculescu F, Stan GE, Ciocan LT et al (2012) Cortical bone as resource for producing biomimetic materials for clinical use. Dig J Nanomater Biostruct 7(4):1667–1677
Artioli G X X-RAY DIFFRACTION (XRD). https://doi.org/10.1007/978-1-4020-4409-0
Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporosis International. Springer, London, pp 1013–1021
Adele B (2003) Bone mineral crystal size. Osteoporos Int 5:16–20. https://doi.org/10.1007/s00198-003-1468-2
Yamamoto K, Yaoi Y, Yamato Y et al (2008) Ultrasonic wave properties in bone axis direction of bovine cortical bone. Jpn J Appl Phys. https://doi.org/10.1143/JJAP.47.4096
Hydroxyapatite | Ca5HO13P3 - PubChem. Accessed 1st Jul 2021 https://pubchem.ncbi.nlm.nih.gov/compound/Hydroxyapatite.
Rincón M, Rodríguez Martínez J, LondoñoLópez M, Echevarría A (2007) Fabricación y caracterización de una matriz tridimensional de hidroxiapatita macroporosa para aplicación en ingeniería de tejidos óseos. Revista EIA. https://doi.org/10.24050/reia.v4i7.173
Held, Kathryn D (2006) Radiobiology for the radiologist, by Eric J. Hall and Amato J. Giaccia. 816–817
Willey JS, Lloyd SA, Nelson GA, Bateman TA (2011) Space radiation and bone loss. Gravitational and space biology bulletin: publication of the American Society for Gravitational and Space Biology 25(1):14
Martínez Ramírez E, Quiroz Garcés A, Velasco Villareal R, de la Rosa Orea G, González Pérez M (2011) Síntesis y análisis de la biocompatibilidad y osteoconductividad de un composito hidroxiapatita/colágeno, implantado en el sacro de un perro. Revista Mexicana de Ingeniería Biomédica 32(2):119–124
Guadarrama Bello D, López Hernández M, Brizuela Guerra N (2011) Determinación de propiedades mecánicas y temperatura máxima de polimerización de cementos óseos acrílicos modificados con micro y nanopartículas de hidroxiapatita. Revista Latinoamericana de Metalurgia y Materiales 31(1):91–98
Silva Y, Delvasto S (2016) Características físicas y mecánicas de porcelanas dentales feldespáticas empleando hueso bovino como reemplazo del feldespato. Revista Latinoamericana de Metalurgia y Materiales 36(1):61–69
Funding
The authors thank Universidad de Guanajuato for the partial support for this work under grant number DAIP/2023–59023.
Author information
Authors and Affiliations
Contributions
Marysol García-Pérez material preparation, data collection, analysis, writing-review, and editing. Angélica Hernández-Rayas software, formal analysis and investigation and writing—review, and editing. Christian Gómez-Solis conceptualization, methodology, validation and writing—review, and editing. José Alfredo SOTO-ÁLVAREZ software, formal analysis and writing—review, and editing. Jorge Oliva validation, formal analysis, and writing—review and editing. Teodoro Córdova-Fraga validation, writing—review, and editing and supervision. The first draft of the manuscript was written by Marysol García-Pérez and Angélica Hernández-Rayas and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflicts of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Córdova-Fraga, T., García-Pérez, M., Hernández-Rayas, A. et al. Bone samples’ behavior in sunlight, IR light, and temperature increase with FEM simulation. Med Biol Eng Comput 62, 225–236 (2024). https://doi.org/10.1007/s11517-023-02929-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-023-02929-5